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Abstract. Brain aging is a widely studied longitudinal process through-
out which the brain undergoes considerable morphological changes and
various machine learning approaches have been proposed to analyze it.
Within this context, brain age prediction from structural MR images and
age-specific brain morphology template generation are two problems that
have attracted much attention. While most approaches tackle these tasks
independently, we assume that they are inverse directions of the same
functional bidirectional relationship between a brain’s morphology and
an age variable. In this paper, we propose to model this relationship with
a single conditional normalizing flow, which unifies brain age prediction
and age-conditioned generative modeling in a novel way. In an initial
evaluation of this idea, we show that our normalizing flow brain aging
model can accurately predict brain age while also being able to generate
age-specific brain morphology templates that realistically represent the
typical aging trend in a healthy population. This work is a step towards
unified modeling of functional relationships between 3D brain morphol-
ogy and clinical variables of interest with powerful normalizing flows.
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1 Introduction

Many machine learning (ML) tasks in neuroimaging aim at modeling and ex-
ploring complex functional relationships between brain morphology derived from
structural MR images and clinically relevant scores and variables of interest [17].
In this context, the aging process of the brain throughout which it undergoes con-
siderable morphological changes is a widely studied example. Many prediction
models have been proposed to estimate a brain’s biological age from a patient’s
structural MRI data (see overview in [6]). The potential difference between a pa-
tient’s predicted biological brain age and the true chronological age is an early
indicator for neurodegenerative disorders like Alzheimer’s disease [7].
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Fig. 1. Graphical overview of the proposed modeling approach based on a conditional
normalizing flow composed of affine coupling layers. The bidirectional flow maps brain
morphology variability to a structured latent space. It solves the brain age prediction
problem (left to right) and can be utilized to sample from the distribution of brain
morphology conditioned on age (right to left). The first component of the latent space
encodes brain age while all other dimensions represent variability. See text for details.

In contrast, modeling the inverse direction of this classical regression task al-
lows the study of morphological changes associated with a certain age on a popu-
lation level, which can be useful to assist basic research [7], or for patient-specific
brain aging simulation [22,20]. This generative modeling problem is closely re-
lated to the numerous atlas (a.k.a. template) building approaches that aim at
computing a model of a population’s average anatomy conditioned on age [13,18].
Several recent papers model the joint distribution of brain morphology and age
with deep learning (DL) techniques such as variants of Generative Adversar-
ial Networks (GANs), Variational Autoencoders (VAEs), or related concepts
[22,20,8,25]. However, most of them only focus on single slices or small 3D re-
gions of the brain due to the high computational costs of these DL techniques.

Despite the volumes of literature available on brain age prediction and age-
conditioned generative brain modeling, the fact that these tasks constitute in-
verse directions of the same bidirectional functional relationship between age and
morphology is usually ignored, and independent or loosely coupled models for
each problem are created. A notable exception is [25], where a VAE is equipped
with a linear regression model that maps the VAE’s latent space representation
of a brain to its age. This component allows the use of the VAE’s encoder for age
prediction and the decoder can generate age-conditioned brains. However, this
extension still does not guarantee that the encoder and the decoder are inverses
of each other, which potentially leads to inconsistencies. Additionally, training
a VAE is usually difficult due to intractable likelihoods and posterior collapse.

In this work, we propose to model the bidirectional functional relationship
between brain morphology and brain age in a unified, consistent way using condi-
tional normalizing flows. Normalizing flows (NFs) [14] learn invertible functions
between a complex probability distribution of interest and a simple base distribu-
tion. In contrast to GANs and VAEs, they can be trained directly via maximum
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likelihood estimation, they do not suffer from posterior collapse, sampling is very
efficient, and both directions are the exact inverses of each other [14].

Our bidirectional NF-based brain aging model is based on ideas about unify-
ing regression and generative modeling using NFs described in [1]. Our model (1)
learns the distribution of brain morphology conditioned on age of a population,
which can be sampled to generate age-conditioned brain templates, and (2) is
able to predict a brain’s biological age given its structural MR image (see Fig. 1).
Moreover, we propose pre-processing steps to encode morphological variability
based on diffeomorphic transformations that allow us to directly handle whole
3D images. To our knowledge, this is the first conditional NF for bidirectional
modeling and analysis of brain aging directly utilizing 3D structural MRI data.

2 Problem Formulation and Pre-Processing

We will first introduce our notation and the modeling problem, then two pre-
processing steps are described in Sec. 2.1 and Sec. 2.2. These steps help us to
efficiently model the brain aging problem described in Sec. 3 with a NF.

For our analysis, we assume a training population {(Ii, ai)}
npop

i=1 of npop
healthy subjects5 to be given. Each tuple (Ii, ai) consists of a subject’s 3D struc-
tural MRI brain scan Ii : R3 → R and the associated chronological brain age
ai ∈ R. The goal of this work is to train a combined regression and generative
NF model that is able (1) to estimate the brain age a ∈ R of a new subject with
brain scan I : R3 → R, and (2) to accurately approximate the distribution of
plausible brain morphology conditioned on age.

2.1 Reference Space and Deformation-based Analysis

Instead of directly using the structural MR images, our method follows the clas-
sical concepts from deformation-based morphometry [4] to represent morpholog-
ical differences with respect to a common template via non-linear, diffeomorphic
transformations. A deformation-based approach is appropriate here as aging
mostly results in shape changes of various brain structures (e.g., cerebral atro-
phy) and it allows our NF to directly focus on shape differences for regression
and we avoid typical problems of generative models (e.g., blurry images).

Following standard practice in deformation-based brain aging modeling [18],
a template image I : R3 → R with a reference brain morphology serves as a ref-
erence space for all further computations. The template can either be computed
specifically for the training population or a standard template can also be used.
We map all the training images non-linearly to this template via diffeomorphic
image registration resulting in npop spatial transformations {ϕi : R3 → R3}npop

i=1 ,
which encode the morphological differences between the template and each sub-
ject. Here, each diffeomorphic transformation ϕi = exp(vi) is parameterized via
a stationary velocity field vi : R3 → R3 where exp(·) denotes the group expo-
nential map from the Log-Euclidean framework (see [3] for details).

5 We assume that for healthy subjects, chronological and biological brain age are equal.
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2.2 Dimensionality Reduction via PCA on Diffeomorphisms

Directly utilizing the previously computed diffeomorphic transformations for 3D
NF-based brain aging modeling is challenging due to the high dimensionality
of the data (MRI brain scans usually consist of several millions of voxels nvox),
which is usually also magnitudes larger than the number of training samples
npop. However, it is safe to assume that the transformations, which are vec-
tor fields, contain redundant information and noise allowing for dimensionality
reduction. Following previous results on brain modeling [12,24], we, therefore,
assume that a low dimensional structure of the space of brain shapes exists. More
specifically, we assume that all plausible transformations needed for aging mod-
eling lie within a nsub-dimensional affine subspace of maximum data variation
A = {v+q | q ∈ span(Q)} with nsub < npop of the velocity fields of the training
data. Here, v ∈ R3nvox denotes the vectorized mean velocity field of the training
data and Q ∈ R3nvox×nsub is an orthonormal column matrix of the first nsub
principal components resulting from a principal components analysis (PCA) of
the velocity fields {vi}

npop

i=1 [3,10]. Performing statistics directly on velocity fields
will preserve diffeomorphisms and the projection matrix Q (with pseudoinverse
QT ) can be directly integrated into the NF model.

3 Normalizing Flow Model for Brain Aging Analysis

Applying the pre-processing steps detailed in Sec. 2 to the training data results
in a set {(vi, ai)}

npop

i=1 . Here, vi ∈ Rnsub denotes a projected velocity field vi in
coordinates of subspace A. Given the training tuples, our goals are two-fold: (1)
Learn a function f(·; θ) with parameters θ that takes a new morphology-encoding
velocity field representation v ∈ Rnsub and predicts its age a ∈ R: a = f(v; θ). (2)
Train a generative model to efficiently sample velocity fields from the conditional
distribution of brain morphologies conditioned on age: p(v|a).

3.1 Bidirectional Conditional Modeling

The innovative idea of this work is to solve both problems with a unified, bidi-
rectional conditional NF model. In general, a NF represents a complex, bijective
function between two sets as a chain of simpler sub-functions [14]. At first, the
bijective property seems to be incompatible with our setup as we are mapping
from Rnsub (velocity fields) to R (age). However, to model p(v|a) we also need
to encode the (inter-subject) morphological variability associated with brains
at the same age. We therefore follow [1] to combine regression and generative
modeling with an NF that is conditioned on the regression target.

Our conditional NF model represents a bijective function f(·; θ) : Rnsub →
Rnsub that maps a nsub-dimensional velocity field to a latent space of the same
size. Aiming for a structured latent space, we define that one dimension of the
latent space accounts for the age a of the input v, solving the prediction task
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while conditioning the flow. All other dimensions store the age-unrelated infor-
mation z ∈ Rnsub−1 needed to reconstruct the input. In the following, sub-parts
of f(·; θ) mapping v to a will be named fa(·; θ).

Imposing a simple prior on z ∼ p(z) (e.g., Gaussian distribution with di-
agonal covariance) and assuming that the distribution p(fa(v; θ)|a) associated
with the age prediction part can be modeled easily and independently (e.g., age-
independent Gaussian residuals for squared error) allow us to relate p(v|a) and
the latent space via f(·; θ) with the change of variables theorem [1,23]:

p(v|a) = p(z)p(fa(v; θ)|a)|J |−1 with J = det

(
∂f−1([a, z]; θ)

∂[a, z]

)
. (1)

Here, f−1(·; θ) denotes the inverse of f(·; θ) and J represents the associated
Jacobian determinant. Given an invertible function f(·; θ), samples from the
simple priors can be transformed to approximate p(v|a).

3.2 Normalizing Flow Architecture and Training

The challenge resulting from Eq. (1) is to find an easily invertible function f(·; θ)
with a tractable Jacobian. In NFs, this is done by first defining [a, z] = f(v; θ) =
fnlay

◦· · ·◦fi◦· · ·◦f1(v) as a chain of nlay simpler, invertible sub-functions fi(·, θi)
(also named coupling layers). Our NF model consists of affine coupling layers
[9,1], which are a common choice in previous NF research due to their flexibility
and favourable computational properties [14].

Let u = [u1,u2] ∈ Rnsub and w = [w1,w2] ∈ Rnsub denote input and output
vectors of an affine coupling layer, where u1 and w1 represent the first nsub/2
dimensions while u2 and w2 cover the second half. Then, an affine coupling layer
w = fi(u, θi), with u = [u1,u2] ∈ Rnsub and w = [w1,w2] ∈ Rnsub , defines an
element-wise affine transformation parameterized by u2 that maps u1 to w1 [9]:

w1 = exp
(
s(u2, θi)

)
� u1 + t(u2, θi) and w2 = u2 .

Here, the scaling function s(·, θi) and the translation function t(·, θi) can be
arbitrarily complex neural networks with weights θi, which allows the NF to
express complex, non-linear transformations. The inverse u = f−1

i (w, θi) of such
a layer can be computed without having to invert s(·, θi) or t(·, θi) via

u1 = exp
(
− s(w2, θi)

)
�
(
w1 − t(w2, θi)

)
and u2 = w2 .

The Jacobian of an affine coupling layer is triangular and easy to compute (see [9]
for details). In our model, we choose s(·, θi) and t(·, θi) to be fully-connected neu-
ral networks composed of nhid hidden layers and ReLU activations with shared
weights θi. As each coupling layer only affects half of the inputs, permuting or
mixing them after each layer is crucial to allow for interaction between the di-
mensions. To do so, we simply reverse the order of the inputs after every second
layer to make sure that all dimensions are able to contribute. The other coupling
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layers are linked by random, fixed orthogonal transformations that mix the data
in an easily invertible way as proposed in [2].

The parameters θ = {θ1, . . . , θnlay
} (weights of all nlay scaling/translation

functions) of our conditional NF model f(·; θ) can be directly estimated using
maximum likelihood training based on Eq. (1). We choose a multivariate Gaus-
sian distribution with diagonal unit covariance as a prior for p(z) and also assume
that the age prediction error ‖fa(v; θ)−agt‖2 with respect to ground-truth value
agt follows an univariate Gaussian distribution with small, user-defined covari-
ance σ2. This results in a negative log-likelihood loss term [15,2,23]

L(a, z) =
1

2

(
σ−2‖a− agt‖22 + ‖z‖22

)
− log|J | . (2)

It is worth noting that this loss will only focus on correctly mapping velocity
fields to the structured latent space (unidirectional training). By representing a
bijective function, no two-way training is required to fit the bidirectional NF.
Furthermore, replacing age a with a vector would allow to build a conditional
model that incorporates factors beyond age.

4 Experiments and Results

In our evaluation, we focus on showing that the conditional NF model for brain
aging analysis derived in Sec. 2 and Sec. 3 is able to (1) predict the biological
brain age of previously unseen structural MR images, while (2) also serving as an
age-conditioned, continuous generative model of brain morphology. To illustrate
the second aspect, we use our NF model to generate conditional templates for
different ages as, for example, also done in [8].

Data: Two databases of T1-weighted brain MR images of 3730 healthy adults
for which age data is available are used for our evaluation: (1) 3167 scans (age
range: 20 – 90 years) from the Study of Health in Pomerania (SHIP) [19] for
training (2684 randomly chosen subjects) and testing (483 subjects not used for
training); (2) 563 scans (age range: 20 – 86 years) from the publicly available
IXI database6 serve as an independent validation set.

For pre-processing (see Sec. 2), we start by computing a SHIP-specific brain
template using all 49 scans of subjects younger than 26 years and the ANTs
toolkit [5]. We use young subjects here because they have little to no atrophy
and a young template seems to be a reasonable starting point when the goal
is to analyze and compare different aging effects/trajectories with respect to a
single template. This 3D template (166×209×187 voxels; isotropic 1 mm spacing)
defines the reference space for our deformation-based modeling approach (see
Sec. 2.1). Subsequently, all 3730 scans are mapped to this brain template via
non-linear diffeomorphic transformations (parameterized by stationary velocity
fields) between the template brain and all subjects, which are computed using
ITK’s VariationalRegistration module [21,11].

6 https://brain-development.org/ixi-dataset/

https://brain-development.org/ixi-dataset/
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The velocity fields of the SHIP data are then used to estimate the affine
subspace of maximum data variation via PCA to reduce the dimensionality of
the modeling problem (see Sec. 2.2). We choose nsub = 500 for our subspace,
which covers ≈ 97% of the variability of the training data.

Experiments: Using the 2684 SHIP training subjects, we first train a con-
ditional NF model as described in Sec. 3.2 on a NVIDIA Quadro P4000 GPU
with 8 GB RAM and a TensorFlow 2.2 implementation. Our architecture con-
sists of nlay = 16 affine coupling layers and each scaling/translation function is
represented by a fully-connected neural network with nhid = 2 hidden layers of
width 32. Given an input size of nsub = 500, this setup results in ≈ 400k train-
able parameters θ. Our batch size was selected to be equal to the total number
of training samples and we optimize the loss function defined in Eq. (2) with
σ = 0.14 for 20k epochs with an AdamW optimizer and a learning rate/weight
decay of 10−4/10−5. All parameters were chosen heuristically, but we found the
results to be relatively insensitive to changes in σ and nlay.

Table 1. Mean absolute errors (MAEs) in years between the known chronological age
and the predicted age obtained for the two approaches (MLR model & NF model) when
the trained models are applied to the SHIP test data subjects and all IXI subjects.
Averaged results are reported for all subjects and six different age groups. See suppl.
material for information about the number of subjects per age group.

Model/
Age range< 40 40− 50 50− 60 60− 70 70− 80 > 80 All

SHIP data (468 test subjects)
MLR 5.34 4.79 5.33 4.35 6.13 7.53 5.12
NF (ours) 5.35 4.67 5.10 4.37 6.29 6.99 5.05

IXI data (563 test subjects)
MLR 6.54 5.44 6.19 7.84 7.71 9.86 6.73
NF (ours) 8.47 5.37 4.92 7.11 6.57 10.17 6.93

The trained conditional NF model is then first used to predict the brain age of
the SHIP test data subjects and all IXI subjects. Prediction accuracy is assessed
by computing the mean absolute error (MAE) between the known chronological
age and the predicted age. For comparison, we also train and evaluate the MAE
of a multivariate linear regression (MLR) model on the same data to predict
brain age from low-dimensional velocity field representations. Here, it is impor-
tant to note that this MLR model also implicitly represents a non-linear map
between brain morphology and age due to the non-linear relationship between
deformation and velocity fields (group exponential map; see Sec. 2.2 and [3]).

Our conditional NF also provides an age-continuous generative model of brain
aging. We show its capabilities by generating age-specific templates of the mod-
eled population for different age values. Here, we assume that the conditional
expectation E[v|a] is an appropriate morphology template for a given age a and
compute velocity vectors v for ages a = {40, 50, 60, 70, 80, 90} via Monte-Carlo
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approximation with 150k random samples. This is done by fixing the age compo-
nent of the latent space and sampling from the NF’s prior for the variability part.
The vectors are then mapped back to the high-dimensional space of velocity fields
using QT (see Sec. 2.2) to obtain the associated diffeomorphic transformations.
These transformations are then applied to the SHIP-specific brain template to
generate structural MR images for the age-conditioned morphology templates.

Results: The evaluation results are summarized in Tab. 2 and Fig. 2. Our
NF model achieves an overall MAE of 5.05 years for the SHIP data and a MAE
of 6.93 years for the IXI data, respectively. Both results are comparable to the
overall accuracy of the MLR model (insignificant differences; paired t-test with
p = 0.79/p = 0.13). However, their performance differs for certain age groups.
Interestingly, for the IXI data, which is known to be a challenging dataset due
to its variability [16], the NF clearly outperforms the MLR model for subjects
between 50 and 80 years. We believe that this finding indicates that our NF
model is able to better capture the general non-linear trend of the aging process.

The conditional templates for different ages displayed in Fig. 2 illustrate that
our NF model is able to capture the typical trend of healthy brain aging. For
example, the total ventricle volume increases by a factor of 2.02 between age
40 and age 90, while the total putamen volume decreases by a factor of 0.87.
Volumes changes were quantified based on segmentations propagated from the
template. Furthermore, the general shape characteristics of the different tem-
plates are stable across the age range, which indicates that the NF disentangles
aging and non-aging factors (see also Fig. 1 of the suppl. material).

50 years40 years 60 years 80 years70 years 90 years

0

1

2

3

Fig. 2. Selected slices of age-specific morphology templates generated using our NF
model for different ages. Last row: Corresponding axial slices of the Jacobian determi-
nants for the generated transformations with respect to the (young) reference template,
which clearly show the increase in ventricle size (values > 1) and the shrinking trend
in other areas (values < 1).
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5 Conclusion

In this paper, we propose a new method to model bidirectional functional re-
lationships between 3D brain morphology and brain age in a unified way using
conditional normalizing flows. In an initial evaluation, we showed that our uni-
fied model can accurately predict biological brain age while also being able to
generate age-conditioned brain templates. Based on the evaluation results, our
future work will primarily focus on obtaining more training data and improving
our architecture to obtain even more accurate age prediction results. We also
plan to compare its performance to different prediction and generative modeling
approaches from the literature and to condition the model on additional factors
beyond age.

Acknowledgements This work was supported by the University of Calgary’s
Eyes High postdoctoral scholarship program and the River Fund at Calgary
Foundation.
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Supplementary Material

Table 2. Number of subjects per age group for both databases used. For the SHIP
data, numbers of training/test subjects are reported separately while IXI subjects were
only used for testing.

Data/
Age range < 40 40− 50 50− 60 60− 70 70− 80 > 80 All

# training subjects/# test subjects
SHIP data 482/86 663/114 634/119 579/103 296/55 30/6 2684/483
IXI data 200 89 99 118 49 8 563
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Fig. 3. Selected slices of random brain morphology samples generated using our NF
model for different ages showing the variability captured by the model. Rows are sorted
by age in an increasing order (10 years difference between each row) from age 40 (top
row) to age 90 (bottom row). The general trend of healthy brain aging is clearly visible
(e.g., larger ventricles with increasing age), while each row also shows that diverse
samples can be generated for each specific age.


	Bidirectional Modeling and Analysis of Brain Aging with Normalizing Flows

