cecting for Imperfect Spin Echo Refocusing in Gas-Free fMRI Calibra Avery J.L. Berman¹/, Erin L. Mazerolle², M. Ethan MacDonald², Nicholas P. Blockley³, Wen-Ming Luh⁴, G. Bruce Pike^{2,1} ¹Department of Biomedical Engineering, McGill University, Montreal, Canada ²Department of Radiology and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada ³FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom ⁴Cornell MRI Facility, Cornell University, Ithaca, USA

Results

(1)

- Calibrated fMRI is typically performed with a hypercaphic gas challenge during BOLD and cerebral blood flow (CBF) imaging¹
- Eliminating the gas challenge could greatly improve the appeal of calibrated fMRI
- Efforts to calibrate without gases, by quantifying the reversible relaxation rate (R'_2) using asymmetric spin echo (ASE) imaging, have tested the hypothesis:²

 $M_{ASE} = \ln S_{SE} / S_{ASE} \cong R'_2 \tau$

Figure 1: (a) and (b) Simulated ASE signals vs. echo time and vessel radius. The lines pass through the mean signal at each echo time. In (a), $\tau = 0$ ms corresponds to a pure SE signal. (c) The ratio of the SE and ASE signals with τ = 28 ms

Key Findings: The SE and ASE curves initially decay quadratically and transition to linear decay. Larger vessels transition later. This results in the ratio, $\ln S_{SE}/S_{ASE}$, decaying linearly for early TE and later plateauing.

Figure 2: (a) Comparison of the ideal *M* value and *M* calculated from simulated ASE

- This underestimated the calibration constant (M), relative to hypercapnia
- The underestimation is postulated to arise from incomplete spin echo (SE) refocusing to due diffusion in the extravascular space²

Objectives

- Determine how incomplete refocusing of SE and ASE signals affects estimation of the calibration constant, M
- Correct for this when performing ASE-based calibration

- SE and ASE signals were simulated as a function of vessel radius with the following parameters:
- $O D = 0.8 \,\mu m^2/ms$ • CBV = 2% \circ Radii = 1–100 μ m $O B_0 = 3 T$ • TE = 4 - 100 ms \circ O₂ saturation = 62%
- As shown in Fig. 1, both the SE and ASE signals approximately follow a quadratic-exponential decay initially and transition to linear-exponential decay later
- Considering just the quadratic decay, we propose the ASE signal model can be modified to include SE attenuation from diffusion

signals as a function of vessel radius. The ideal $M(M_{ideal})$ was calculated as the maximum possible percent gradient echo signal change at a TE of 30 ms (i.e. $TE_{fcn} =$ 30 ms). Using Eq. (1), M_{ASF} was calculated at a single TE of 40 ms with τ = 30 ms, as in [2]. Using the SE and ASE signals at TEs of 40 and 50 ms, M was calculated using the q-ASE model by fitting for R'_2 and $(R_{2,diff})^2$. (b) The estimated $(R_{2,diff})^2$ values from the q-ASE fits for each radius.

Key Findings: M_{ASE} significantly underestimates M_{ideal} ; M_{q-ASE} compensated for this underestimation for intermediate to large vessels; The vessel-size dependence of $(R_{2,diff})^2$ is very similar to that of SE BOLD.⁴

Figure 3: Comparison of *M* measured *in vivo* from hypercapnia (HC), from the first ASE echo time (ASE (TE=42 ms)), from the q-ASE model fit to the first three TEs (q-ASE (3TEs)), or fit to all four TEs (q-ASE (4TEs)). * denotes the ASE or q-ASE M values were significantly different from the HC values. # denotes the q-ASE *M* values were significantly greater than the ASE (TE=42ms) *M* values. Significance tests were performed using false discovery rate-corrected paired t-tests. Bars represent the mean ± standard deviation.

Key Findings: M_{ASE} tends to underestimate M_{HC} ; The q-ASE model tends to increase the M_{ASE} values; Regions of severe field inhomogeneity locally limit the method's effectiveness.

madin

 Pairs of CSF-nulled SE and ASE EPI images with FLAIR preparation were acquired in seven healthy subjects at 3 T (GE Discovery 750) using:

• Diffusion leads to imperfect spin echo refocusing that can be approximated by quadratic-exponential decay initially and linearexponential decay at later times (Figs. 1 a & b)

using a quadratic ASE model (**q-ASE**):

 $S_{ASE} = S_0 e^{-R_2 TE} e^{-R_2' \tau} e^{-(R_{2,diff})^2 (TE - \tau)^2}$ (2) diffusion-induced spin echo attenuation

• The ratio, $\ln S_{SE}/S_{ASE}$, then decreases linearly with TE:

 $\ln \frac{S_{SE}}{S_{ASE}} = R'_{2}\tau + (R_{2,diff})^{2}\tau^{2} - 2(R_{2,diff})^{2}\tau TE$ (3)

- If $\ln S_{SE}/S_{ASE}$ measured at more than one TE, we can estimate R'_{2} and $(R_{2,diff})^{2}$ from a linear fit to (3)
- Considering *M* as the maximum possible BOLD signal,³ it can finally be estimated using

 $M = e^{-R_2'TE_{fcn}} - 1$

TE_{fcn} : echo time in functional imaging after calibration

- \circ In-plane resolution = 2.33 mm \circ TR / TI = 8 s / 2 s \circ Slice thickness = 2.0 mm + 1.0 • TEs = 42, 50, 60, 70 ms \circ N_{reps} = 15 mm gap \circ ASE τ = 30 ms
- Images were registered and corrected for geometric distortion⁵ and signal loss from though-plane gradients using a field map
- Signals were averaged across grey matter regions of interest^{6,7}
- M_{ASF} was calculated using Eq. (1) at a single TE of 42 ms
- *M* was also calculated using the q-ASE model by fitting Eq. (3) with either the first 3 echoes or all 4 echoes
- For comparison, *M* was calculated from a 5% CO₂ fixed-inspired hypercapnia challenge using a dual-echo pseudo-continuous ASL sequence

- The quadratic decay can be described by a diffusion decay term, $(R_{2,diff})^2$, that depends on vessel size (Figs. 1 & 2)
- This decay leads to M_{ASF} underestimating the expected M, as observed in our simulations (Fig. 2a) and in vivo (Fig. 3), and consistent with previous findings²
- Measuring the linear decay of $\ln S_{SE}/S_{ASE}$ permits partial to full compensation of the underestimation of *M* (Figs. 2a & 3)
- Future studies may benefit from measuring $(R_{2,diff})^2$ or using an assumed value to correct M_{ASF} for SE attenuation

This work was supported by the Canadian Institutes of Health Research and the Campus Alberta Innovates Program.

email: avery.berman@mail.mcgill.ca

[1] Davis et al., PNAS 95:1834 (1998). [2] Blockley et al., Neuroimage 104:423 (2015). [3] Hoge et al. MRM 42:849 (1999). [4] Boxermann et al., MRM 34:555 (1995). [5] Jezzard et al., MRM 34:65 (1995). [6] Ashburner and Friston, Neuroimage 26:839 (2005). [7] Mazziotta et al., Philos Trans R Soc Lond B Biol Sci 356:1293 (2001).

(4)