

INTRODUCTION

- MR perfusion imaging provide clinically useful maps (CBF, CBV, MTT) for the identification of ischemic and infarcted brain tissue in stroke [1]
- In DCE MR imaging a linear relationship exists between signal intensity and (low ranges of) [contrast (Gd-DTPA)] [2]; accurate quantitative perfusion maps can be generated
- **Objectives: To improve the precision of DCE MR** brain perfusion imaging by 1) increasing signal change in brain tissue in the presence of a contrast agent ($\Delta S = S_{contrast} - S_{baseline}$), and 2) decreasing signal noise.

HYPOTHESIS

To improve the precision of DCE perfusion measurements, the SPGR equation and the MR SNR-bandwidth (BW) relationship can be used to model signal in brain tissue, to select scanning parameters that maximize ΔS and/or minimize signal noise.

PART I – INCREASING ΔS

Fig 1: $\Delta S(TR, \alpha)$ for WM using the SPGR equation. Constant parameters: TE = 1.4 ms, $T_1 = 1.1 \text{ s}$, $T_2^* = 70 \text{ ms}$, $r_1 = 3.3 \text{ [Hz/mM]}$, r_2 = 5.2 [Hz/mM], [Gd in arterial blood] = 8 mM. The maximum ΔS curve shows the optimal pairs of TR and α .

Phantom Experiment

Fig 2: The phantom modeling brain tissue was made from dissolved agarose and Gd. Submerged PE and silicone tubing mimicked blood vessels. The phantom was scanned with saline and then with 8 mM Gd injected, at TR values of 4, 8, and 16 ms; other user-selected parameters were held constant.

Enhanced Dynamic Contrast Enhanced (DCE) Magnetic Resonance (MR) for Brain Perfusion Imaging

Estee Lee,^{1,3,4} M Ethan MacDonald,^{1,3,4} and Richard Frayne ¹⁻⁴

¹Biomedical Engineering, ²Radiology and Clinical Neurosciences, ³Hotchkiss Brain Institute, University of Calgary, Alberta, Canada ⁴Seaman Family MR Research Centre, Foothills Medical Centre, Alberta Health Services, Calgary, Alberta, Canada

Patient Experiment • An acute stroke patient was scanned with DCE MR using TRICKS [4], with informed consent • Scans were acquired at two TR (Fig 3) during the single injection for ΔS comparison

a) Pre-Gd b) Gd Injection $TR/FA = 3.3 \text{ ms}/ 17^{\circ} TR/FA = 8 \text{ ms}/ 30^{\circ}$ c) Post-Gd Time $TR/FA = 3.3 \text{ ms}/17^{\circ}$

Fig 3: The sequence of scans acquired pre- and post-Gd injection. ΔS is calculated by subtracting the baseline signal from the the post Gd signal (rather than peak signal) for direct comparison between $\Delta S_{TR3,3}$ and ΔS_{TR8} Assumption: there is no change in [Gd] between $S_1 \& S_2$ and between $S_3 \& S_4$.

Fig 4: Comparison of the percent increase in ΔS when longer TR is used compared to TR of 4 ms for phantom, and TR of 3.3 ms for patient. Model and experimental values are similar.

Fig 5: ΔS of one slice of patient data, at the two sets of parameters scanned. Increased signal and physiological differences within WM and GM can be better visually observed at TR/FA of 8 ms/ 30°.

Discussion

- Phantom images scanned at a TR of 8 ms and 16 ms both showed increases in ΔS (compared to TR of 4 ms) that supported modeled values (Fig 4)
- Patient images visually and quantitatively showed increased signal difference in WM and GM regions using TR of 8 ms compared to TR of 3.3 ms (Fig 4 & 5)
- Selecting TR closer to the 'optimal range' as modeled (Fig 1) result in higher ΔS with contrast agent injected

PART II – DECREASING NOISE

- The relation $SNR \propto 1/\sqrt{BW}$ [5] was tested
- A spherical phantom containing dimethyl silicone fluid, Gd, and colorant was scanned at a range of BW
- The SPGR sequence was used to scan the phantom at three sets of TR/BW: 8 ms/25 kHz, 16 ms/25 kHz, and 16 ms/ 6.41 kHz
- Lower BW required longer readout time

Fig 6: Percent increase in SNR by varying BW and/or TR, calculated from mid-volume circular ROI. 24 time phases were scanned at a TR of 8 ms and 12 time phases were scanned at a TR of 16 ms.

Discussion

- Lowering BW and increasing TR resulted in the theorized increases in measured SNR
- The longest TR and lowest BW combination resulted in the highest SNR increase
- This suggests that longer TR (closer to 'optimal') and lower BW are needed to improve perfusion measurements

REFERENCES

1. Khan *et al. Am J Med* 2013.

2. Sourbron et al. Magn Reson Med 2009. 3. Bernstein et al. Elsevier Inc. 2004.

CONCLUSIONS

- Modeling WM with the SPGR equation allowed selection of more optimal TR and flip angle values to increase ΔS in both phantom and patient experiments
- Analytical analysis and phantom validation demonstrated that decreasing BW increased SNR
- Selecting an appropriate combination of scanning parameters can improve DCE MR perfusion measurements to better observe strokes anatomically and hemodynamically (Fig. 7)

Fig 7: Example of preliminary CBF, CBV, and MTT maps of a healthy volunteer, derived from DCE MR using a TR of 9 ms, flip angle of 39° and BW of 6.41 kHz. Some anatomical differences within WM can be seen.

4. Korosec et al. Magn Reson Med 1996. 5. Haacke et al. John Wiley & Sons 1999.

