Chapter 1. Magnetic Circuit
1.1 Magnetic Circuit

Consider a simple magnetic structure as shown in Figure 1.1. The following assumptions
are made for symplifying magnetic circuit analysis:

(A1) The magnetic flux is restricted to flow through the magnetic materials with no leakage;
(A2) The magnetic flux density is uniform within the magnetic materials.
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Figure 1.1 Magnetic circuit
If the coil has N turns and carries a current i, the magnetomotive force (mmf) in A - ¢,
produced by the current i, is
F =Ni
Ampere’s law states that the line integral of the tangential component of the magnetic field
intensity H (in A/m) around a closed path C is equal to the total current passing through the
surface enclosed by the path, that is,

F = ﬁ-d? - §Hcos9d1

where 7 is the length vector whose direction is chosen in a way so that the angle between H
and d 1 is the smallest and 6 is the angle between the vectors H and d . The direction of H
is detrmined by the right-hand rule:

The right-hand rule 1: Imagine a current-carrying conductor held in the right hand with the
thumb pointing in the direction of current flow, the fingers then point in the direction of the
magnetic field created by that current.

The right-hand rule 2: If the coil is grasped in the right hand with the fingers pointing in the
direction of the current, the thumb will point in the direction of the magnetic field.
Due to (A1), the mean path can be chosen to calculate the magnetic field intensity H. Note
that 6 = 0. Thus,

F = HI
where [ is the mean legnth of the magnetic core.
The magnetic field intensity His related to the magnetic flux density B (in Wb/m?) by

- -
B = uH
where u = u,uo is called the magnetic permeability (in H/m) with u, the ralative permeability
and uo = 47 x 107’ H/m the permeability of the air or free space.
The flux in the core is determined by

¢ = BA
where A represents the cross-sectional area of the magnetic core.



Therefore, F = HI can be rewritten as

F=H=Li=21=-"L¢=9%

where R = ﬁ is defined as the reluctance of the magnetic circuit.

Comparing the expression & = R¢ with Ohm’s law V = RI, we find that R is analogous to R,
¢ to I, and F to V. This analogy enables us to represent the magnetic core in terms of an
equivalent magnetic circuit as shown in Figure 1.1. Like the voltage source in the electric
circuit, the mmf in the magnetic circuit has a polarity. The positive end of the mmf source is
the end from which the flux exits and the negative end is the end at which the flux re-enters.
Reluctances in a megnetic circuit obey the same rules as resistances in an electric circuit.
The equivalent reluctance of a number of reluctances in series is just the sum of the
individual reluctances:

iReq =R +Ry+---

Similarly, reluctances in parallel combine according to the equation
1 _ 1 1
Reg Ry R,

Example 1.1:

A magnetic core is shown in Figure 1.2. Its depth is 3cm and its mean length is 30cm. The
length of the air-gap is 0.05cm. The coil has 500 turns. The relative permeability of the core
is assumed to be 70,000. Neglect fringing effects and assume the flux density of the core is

B. = 1.0Wb/m?. Find the reluctances of the core and air-gap, flux in the core, and the
current required.

b= j-

Figure 1.2 Magnetic circuit
Solution: The reluctance of the core is calculated by

Y 30x102 _ .
Re = o = Somradl o = 3789. 4A - t/Wh
The reluctance of the air-gap is
= o _ 0.05x1072 _ .
R, = oAe = Ime107x0.03:0.03 = 442100A - t/Wb

The total reluctance in the magnetic circuit is given by
R =R +NR, =3789.4+442100 = 445890A - t/Wb
The flux in the magnetic circuit is
¢ = BcA. = 1.0x0.03 x 0.03 = 0.0009Wb
The current in the coil is
PR

Example 1.2: Consider the magnetic circuit as shown in Figure 1.3. Determine the flux
through various magnetic paths.
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Figure 1.3 Magnetic circuit
Solution: The reluctance in the center leg is Reener = R3 + Ry

The total reluctance seen from the coil side is
(R3+R4)Ny R1(R3+R4+R)+(R3+R4) R
_ S _ _
mmml - ml + (mS + R4)||m2 - ml + 913+5R4+5R2 - ‘R}P.Rrr‘ﬁz
The flux in the left leg is
F _

_ Ni
¢1 T R Ry Ry R0 )+ (R34, )Ry
N3+ R4 +90,

The flux in the center leg is

¢ _ 3"2 — ¢ 1 (tR center H ‘Rz) — ¢ 1 ‘Rcenmr‘R2 — ¢ 1 ‘.R2
3 mcent@r mcent@r mcent@r mcemer‘pRz SR3+5R4+SR2
The flux in the right leg is
¢ — :FZ — ¢l(mcenmr“m2) — ¢1 Reenter R2 — ¢1(‘R3+‘R4)
ITw Ry Ry ReewertRo Ry Rat Ry
where
! Iy 21 lg
m = a m = m = C m =
! frpioA > V2 frpoA * 73 frpoA 4 HoA

1.2 AC Excitation, Eddy Current Loss, and Hyteresis Loss
Induced Voltage
Consider the magnetic circuit as shown in Figure 1.1, with the cross-sectional area A and
the mean length /. Assume that the flux is a sinusoidal function of time, that is,

A1) = Pmax Sin(wt) = ABmax sin(wt)
where ¢max and Bnax are the amplitudes of the flux and the flux density, respectively, and
o = 2xf.
It follows from Faraday’s law that the induced voltage is given by

e(t) = %q: = No@max cos(@t) = Emax cos(wt)
where Enax = NoO@max = ONABmax = 27fNAB max .-
In steady-state operation, we are interested in rms values of voltages and currents. The rms
value of the induced voltage is given by

E = ZT;fNABmax = ﬁanABmax

Excitation Current

To produce a magnetic flux in a magnetic core, a current is required, which is referred to as
the excitation current, denoted i4(r). Due to the nonlinearity of the B-H curve and the
hysteresis property of the magnetic materials, i4(r) = £ is not a sinusoidal function.

Eddy Current Loss

A time-varying flux induces an emf in the magnetic core in accordance with Faraday’s law.
Since the magnetic materials are good conductors, the induced emf produces a current
along a closed path inside the magnetic core. Such a current is called eddy current because



its swirling pattern resembles the eddy current of water.
As a consequence of this eddy current, energy is converted into heat in the resistance of
the path, which gives rise to the power loss. Such a loss is referred to as the eddy current
loss, which is determined by

P, = kefzazBrznaxV
where P, is the eddy-current loss in watts (W), k. is a constant that depends on the
conductivity of the magnetic material, fis the frequency in hertz (Hz), ¢ is the lamination
thickness in meters (m), Bmax IS the maximum flux density in teslas (T), and V is the volume
of the magnetic material in cubic meters (m?).
To reduce the effects of eddy currents, magnetic structures are usually built of thin sheets
of laminations of the magnetic material, insulated from each other by an oxide layer or by a
thin coat of insulation materials.
Hysteresis Loss
Assume that the flux in the core is initially zero. An ac current is applied to the winding. As
the current increases for the first time, the flux in the core traces out path ab as shown in
Figure 1.4. However, when the current decreases, the flux traces out a different path bcd,
and later when the current increases again, the flux traces out path deb. This failure to
retrace flux paths is called hysteresis. The path bcdeb is called a hysteresis loop.
Each time the magnetic materail is made to traverse its hysteresis loop, it produces a power
loss, which is commonly referred to as the hysteresis loss. The hysteresis loss can be
determined by

Py = kth?naxV
where Pj, is the hysteresis loss in watts (W), k; is a constant that depends on the magnetic
material, and n is the Steinmetz exponent.

Core Loss
It is a common practice to lump the eddy current loss and hysteresis loss together to define
the core loss
Peore = P+ P, = k2f252Br2naxV+ kth?naxV = Keszrznax + thB?nax
where K, = k.6°V and K;, = k, V.

1.3 Flux Linkage, Inductance, and Mutual Inductance

Inductance

Consider the magnetic circuit as shown in Figure 1.1. Faraday’s law states that if a flux ¢
passes through a winding of N turns, a voltage will be induced in the winding and the
induced voltage e is directly proportional to the rate of change in the flux linkages A = N¢

with respect to time, that is,

— _dh _ N9
€=""u = dt

where the minus sign means that the polarity of the induced voltage is such that if the
winding ends were short-circuited, it would produce current that would cause a flux
opposing the original flux change.

The self inductance or inductance (in H) of the winding is defined as the ratio of the flux
linkages and the current, that is,

_ A _ At
L=4+=-N%

If L is constant, then
__dr _ _dL) _ g di
€= " = d Ld;

L depends on the physical dimensions of the magnetic circuit and the permeability of the



magnetic materials. For the magnetic circuit as shown in Figure 1.1, L can be determined
as follows:
A o & N N?

L=+4=N7=N4=Ng=+%
Example 1.3: The magnetic circuit of Figure 1.45 consists of an N-turn winding on a
magnetic core of infinite permeability with two parallel air gaps of lengths g, and g, and
areas A, and A,, respectively. Find the inductance of the winding and the flux density B, in
gap 1 when the winding is carrying a current i. Neglect fringing effects at the air gaps.

Solution: The equivalent circuit shows that the total reluctance is equal to the parallel
combination of the two gap reluctances R = —£— and %, = ——. Thus
HoA 1 HoA2
F i NZ(R1+R,)
A=Np=NL =N = Al

Wy 9% RNy
W0,

and

i RN, - 81 82
HoAL HoA2

L= 2 — N2(R+Ry) NZ(H§A1+Hg§2) _ N2 ﬂ.,.ﬂ)
= = Ho 81 82

The fluxingap 1 is

_ _Ni _ HMoAINi
$1 = R, &
and thus
_ 91 _ HoNi
Bl - Al - 81

Mutual Inductance

Consider the magnetic circuit as shown in Figure 1.5. If a current i, is applied to coil-1 while
a current i» to coil-2, then the total mmf is
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Figure 1.5 Magnetic circuit
F = Niiy + Naip
The reluctance of the core is

= L
SR_HA

The flux in the core is given by
¢ = % = %i] + %iz = Nl%il +N2%l’2
The flux linkage of coil-1 is
A =Ni¢p = N%%il +N1N2%i2
which can be written
A= Lyiy+Lpiy = An+ A
where
Ly =2 = y2 4

3] [



is the self-inductance of coil 1 and A,; = L;i; is the flux linkage of coil-1 due to its own

current i;. The mutual inductance from coil-2 to coil-1 is
A
Lip = ,—122 = NINZ%

and A, = L,z is the flux linkage of coil-1 due to the current i,.
Similarly, the flux linkage of coil-2 is
Ay = Nogp = NINZ%Z'I +N%%i2 = L21i1 +L22i2 = A +An
With Loy = 224 = Lip = NIN2 55, Ly = 22 = N34%, A1 = Lajia, and Az = Losia.
Now suppose A2 = k1A and Az = kaA2. Then it is easily checked that
LipLyy = 22220 = MAn Jode g1,y

2 31 i i

In a linear system, L, = L,; = M. Therefore,
M = kJLiiLy»
where k = Jkik, is known as the coefficient of coupling or the coupling factor between the
two coils.
If the inductances are constant, then the induced voltages can be calculated by

_ d/l] _ d(L11i1+L12i2) dll dlz

ey = - = 7 =Li1——+Lp
dA d(Lpyi1+Lyyi d d
er = dtz _ Al 1dt ni2) _ = L, 4 ll +L22 lz

Example 1.4: A magnetic circuit W|th two wmdings was tested with an ac source at 60Hz
and the following data were recorded.

Test Coil Condition RMS Voltage (V) RMS Current (A)
1 Coil-1 connected to a voltage source 80 1.5

Coil-2 open circuit 30 0
2 Coil-2 connected to a voltage source 60 1.0

Coil-1 open circuit 20 0

Assume the magnetic circuit operated in the linear region and neglect the hysteresis effects.
Neglect the winding resistances. Determine the self inductance, mutual inductance, and
coupling factor.

Solution: The ac currents can be expressed by i;(t) = V2 I;cos(wt) with @ = 2zfand j = 1,2,
For the first test, the following equations are obtained:

—LuﬂJrL di =Ly d” = —J2 oLy 1, sin(ot)
vy = Loy 4l + Ly = [ 40 d” = — V2 oLy sin(t)
which implies that the rms values of vi and v, are equal to L1, and wL,1;, that is,
Vi =oLuli = L = o= = =8 = 0.14147H
Vo = oLauly = Loy = o+ = 5=30-= = 53.05mH

Similarly, it follows from the second test that
= Lllﬂ + Ly dl =Ly dl2 = —ﬁa)Lzllz sin(a)t)
vy = L217 + Ly—= dt =Ly dlz = —ﬁ(oLzzlz sin(a)t)

and
V] = a)lelz = le = mv_llz = % = 53.05mH
Va = oLnl = Ly = o= = 580 = 0.15915H

The coupling factor is



k= L 53.05x1073

VLiiLlx - JOT4147x0.159 15 = 0.35355

Example 1.5: Given the magnetic circuit as shown in Figure 1.6, neglect fringing effects,
leakage flux and reluctances in the magnetic materials. Determine the self-inductances and

mutual inductances.
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Figure1.6 The magnetic circuit for Example 1.5
Solution: The reluctance of each air gap is iR, = ﬁwhere A is the cross-sectional area of

the gap. The fluxes satisfy the following equation

¢1 = 2+ @3

For the left loop, we have
Fi1 =01 R + P3N, = N1 + ¢3)
that is,
F
P1+ 3 = N
For the right loop, we have
Fa= (]529157 - ¢3mg = 9%’(‘/52 - $3)

that is,
b2 —¢s = 5=

Substituting ¢1 = ¢ + ¢3 into ¢1 + @3 = i—;gives
d2+ 263 = 5+

Subtracting ¢, — ¢3

‘;—z from ¢, + 2¢3 = ‘;—g‘ yields

F F F-F
3¢3: L Fr i)

Ry W | R
that is,
¢ _ Fi-F>
3 E
. F
Then, it follows from ¢, — @3 = m—gz that
_ fF_2 _ F=F, 3F, _ Fi+2F, _ Nii1+2Naip
$2 =3+ - = 3w, T 3w, O awm, 3w,
and from ¢, = ¢, + ¢3, we have
_ _ $1+2((F2 ‘7:1—3"2 _ 23"14“7:2 _ 2N1i1+N2i2
$1 =2+ ¢3 = m, T 3w, 3w, 3w,
Therefore,
2N? . NN, -
ﬂ] = N1¢1 = W{{ll + SERZ 12
NN, . 2N3 .
Ao = Nogo = Sbin + 5o

which implies that



2N3
39,

2NT NiN>
Ly = 55,Lip = Lo = Ly =

3R,

H g

with R, = =,
8 HoA

Chapter 2. Electromechanical Energy Conversion

An electromechanical system consists of an electrical subsystem (electric circuits such as
windings), a magnetic subsystem (magnetic field in the magnetic cores and airgaps), and a
mechanical subsystem (mechanically movable parts such as a plunger in a linear actuator
and a rotor in a rotating electrical machine), as shwon in Figure 2.1.

Electromechamcal System

+ ¥ +

Flectrical System  [—w Magnetic System 1w Mechanical System

| |

Voltage,Current Magnetic Flux  |4» Position,Speed.Acceleration

F 3
L J

— - J, Force : -
Cirawt Equations 1 Force/Torque Equations
1 Torque 1 |
Emf L 3 |

ByEVLECL By Newton's Laws

Figure 2.1 General concept of electromechanical system modeling

2.1 Force and Torque on a Current Carrying Conductor: Motor
Action

The force on a conductor carrying a current i in a uniform magnetic field Bis given by the
Lorentz’s force law:

—

f= il xB
In a rotating system, the torque about an axis can be calculated by
1=T7xf

where 7 is the radius vector from the axis towards the conductor.

2.2 Energy Stored in Magnetic Field
Energy Stored in Magnetic Circuit with a Single Coil

Consider the magnetic circuit with a single winding as shown in Figure 1.1. Neglect losses.
Note that

di

e:dt

and
L=2
The electric input power is determined from
_ i, — 1dA
p=ie=1""

The energy stored in the field during dr is
dWy = pdt = id).
With zero initial energy stored in the magnaetic field, the energy at time ¢ is



Wy = [ pdt = [Lidh = [} 2d2 = 122
or _

Wy = [ pdt = [\ idh = [ id(Li) = 1L
Example 2.1: (see Example 1.1) A magnetic core is shown in Figure 1.3. Its depth is 3cm
and its mean length is 30cm. The length of the air-gap is 0.05cm. The coil has 500 turns.
The relative permeability of the core is assumed to be 70,000. Neglect fringing effects and

assume the flux density of the core is B, = 1.0Wb/m?. The frequency of the source is 60Hz.
Find the inductances of the core and energy stored in the field.

Solution: It follows from Example 1.1 that

N 30x102 _ .
R = Lo = 002 _ 3780 44 - /Wb
= _la  _ 0.05x102 _ .
Ra = HoAa — 4rx107x0.03x0.03 442100A - t/Wb

R=R.+R, =3789.4+442100 = 4458904 - t/Wb
The inductance is

- A _ M _NF _ NN _ N _ 50 _
L_i_ i iR iR R _445890_0'56068H

If R, is neglected,

L= = 000 —0.56548H

The error caused by neglecting the reluctance of the core is only
error = 0.56548 — 0.56068 = 0.004 8H.

The flux in the magnetic circuit is
¢ =BA.=1.0x0.03x0.03 =0.0009Wb

The current in the coil is

. 9N 0.0009x445890
j= P Q009N _ 80264

The stored energy is
Wy = LLi> = £ x0.56068 x (0.8026)* = 0.18059]
Energy Stored in Magnetic Circuit with Two Coils
Consider the magnetic circuit with two windings as shown in Figure 1.5. Neglect losses.
Then the electric input energy is equal to the energy stored in the field, that is,
dW, = dW,
The electric input power is
p = el + eqin
and the input energy is
aw, = pdt = eqi1dt + exirdt
Note that e; = - and e, = 2.
Thus, the stored energy can be expressed as
dW¢ = de = ildﬂ,l + izdlz
Recall the relations L, = L,; and
A1 = A+ A2 = Ly + Li2ip
Ar = Aot + Ax = Lotiy + Lnin
to get




dWy = dW, = i1d(Li1i1 + Li2iz) + iad(Laiit + Lasiz)
= Lniidiy + Liivdip + Lojiadiy + Losiadis
= Lyirdiy + Li2(ivdin + ixdiy) + Lyiadis
= Lyjiidiy + Li2d(iyi2) + Laiadis

For the case that the inductances are independdent of currents, W, can be calculated by

Wy = [(Luirdiy + Lid(iriz) + Laiadis)
On the other hand, solving the equations
Ar = Ly + Liaiz
A2 = Latiy + Lazio
for iy and i, yields
i1 =i +T'pis
ir =InA1 +T'nkso
where I'y; = Ly/A T =T5 = —Ljp/A Ty
Then,

1 *2 P 1 2
7L11l1 + Lipiqis + 7L2212

Lii/A, and A = Ly Ly — (L12)>.

dWy = (T1iA1 + Tiod2)dAy + (T2 A1 + Tolo)dA,
= I'nAidA + TipdadAy + Toid1dAy + TandadAs
= I'iididAy + Ti2(A2dA + A1dAz) + TadadAs
=I'nAidA +Tid(A1A2) + TndadAs
which means that
Wi = [(T1ididAr + Tpd(Aadn) + Tndadis) = 2THA +Tidids + 2043

2.3 Force and Torque Calculation from Energy
A Singly Excited Linear Actuator

i F
+ O~ Lossless magnetic [0 +
e energy storage x
-0 system o—
Electrical Mechanical
terminal terminal
(a)
i Magnetic core
m—
+ O—AAA—O
Winding + G—p
p resistance , G %’_‘_, -
d
- ¢ \
— OO
- Movable
Lossless magnetic plunger
winding
(b)

Figure2.2 A singly excited linear actuator

Consider a singly excited linear actuator as shown in Figure 2.3. The winding resistance is

10



R. A voltage v is applied to the winding, which produces a current i. Assume that at a
certain time instant 7, the movable plunger is positioned at x and the force acting on the
plunger is 7 with the reference direction chosen in the positive direction of the x axis, as
shown in the diagram. After a time interval dt, the plunger has moved for a distance dx
under the action of the force 7 The mechanical work done by the force during this time
interval is thus

dw,, = fdx
The electrical energy supplied by the electrical source during this time interval is calculated
by

dW, = vidt
The energy dissipated in the winding resistance during this time interval is

dWoss = Ri’dt
Suppose that there is no mechanical losses in the system. According to the principle of

conservation of energy (energy is neither created nor destroyed and it is merely changed in
form), the energy stored in the magnetic field during this time interval dW; must satisfy

dWy = dW, — dWioss — dW,, = vidt — Ri*dt — fdx = (vi — ri)idt — fdx = eidt — fdx = “=idt — fdx = id
From the above equation, we know that the energy stored in the magnetic field Wy is a

function of 2 and x. Therefore, W, can be expressed as

oW, (2, OW(A,
Wy(A,x) = Wg; D dy + ng Y

By comparing the above two equations, we conclude
6W¢ (/1 X) 6W¢ (/1 X)

i = S=-
It follows from Section 2.3 that the energy stored in the magnetic field can be calculated by
Wy(Ax) = [ i(A.x)dA
For a magnetically linear system (with a constant permeability or a straight line

magnetization curve such that the inductance of the coil is independent of the excitation
current), the above expression becomes

_ 1A%
W¢()"x) - L(x)
Therefore, the force can be calculated by
0W¢(/1x) _ _( )2 dL(x) 1 ;2 dL(x)
f=- - L(x) - dx

Example 2.2. Calculate the force actlng on the plunger of a linear actuator as shown in
Figure 2.3.

11
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Figure2.3 A singly excited linear actuator

Solution: The reluctance of the actuator is
_ 2g
8 7 poldx)l

The inductance of the actuator is
Lx) = 22 = 2V gy

En 2
Therefore, the force acting on the plunger is
.2 dL(x ) .
f= G = gy’

The minus sign of the force indicates that the direction of the force is to reduce the
displacement so as to reduce the reluctance of the air gaps. Since this force is caused by
the variation of magnetic reluctance of the magnetic circuit, it is known as the reluctance
force.

Doubly Excited Rotating Actuator

1 Spring

Electrical -+
source 1 S—
ALe;

Electrical
source 2

Rotor i

Stator —

Figure 2.4 A doubly excited actuator
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The general principle for force and torque calculation discussed above is equally applicable
to multi-excited systems. Consider a doubly excited rotating actuator as shown in Figure
2.4. The differential energy functions can be derived as following:

dWy = dW, — dW,,

where
dWe = ildll + izdﬂ,z
dW,, = 1df
Hence,
. . oWy (A1,A2,0 oWy (A1,A2,0 oWy (A1,A2,0
AWy (A1,22.0) = irdAs +irdds — 7dd = ZEE22D )y o ZHCLRD g, o SRCLDD g
which implies that
WA, A2.0)
= oAy
_ OWe(A1.02.0)
2= o
Wy(L1,22,0)
= D
Note that for a linear system
W¢(l],ﬂ,2,9) = %F%IA% + 1—‘121112 + %Fzzl%
Then, we have
W4 (A1,42,0 dry (0 dr'12(0 dl' 2 (0
v = - = (FATEET 4 Md T+ LA
It is useful to express 7 in terms of Ly, Li», and L. It can be verified that
_ 6W¢(i1,i2,9) 12 dL]](G) .. dle(é)) 1 2 szz(B)
T= a0 S ol thha—g— Ty

Example 2.3: Write an expression for the inductance of the magnetic circuit for Figure 2.5
as a function of § and derive an expression for the torque acting on the robot as a function
of the winding current i and the rotor angle 6. Neglect the effects of fringing and the
reluctance of the steel.

Axial length (perpendicular
to page)=~h

Kaaded

Figure2.5 Singly excited rotational actuator
Solution: The reluctance of the air-gaps is

_ 2g
iRS’ T uoh(r+0.5¢)0

The inductance of the magnetic circuit is

13



2
L(Q) N2 _ 1oN h2(;+05g) 0

The energy stored in the magnetic field is
We(2.0) = [ i(2.0)d2 = [ h-dd = L2

0 L) 2 L)
The torque is
_ awme) B _( )2 d®) _ 1 odo) _ 1 1oN2h(r+0.58) 2
r= = 0) =287 T2 2%

Example 2.4. In the system shown in Figure 2.4, the inductances in henrys are given as
L1 = 0.001(3 + cos20)
L =0.3cosf
Ly» =30+ 10cos?26
Find the torque z(0)for currents i; = 0.84 and i, = 0.01A.
Solution: The torque can be determined by
1:24dLu®) o, dln®) 1 2 dLx(0)

T= ol thl2a—p a0

= —ll( 0.0025sin260) + i1i2(— 0 3sm0) + —12( 205in 26)
= —0.001i2sin20 — 0.3i1i> sin® — 10i3 sin 20
= —0.001 x 0.82?sin20 + 0.3 x 0.8 x 0.01sin® — 10 x 0.012 sin20
= —0.00164sin260 — 0.0024 sin 6
Example 2.5: The magnetic circuit of Figure 2.6 is excited by a 100-turn coil wound over the
central leg. The depth is 1cm, a=1cm and b=5cm. Determine the current in the coil that is
necesssary to keep the movable part suspended at a distance of 1cm. Both magnetic circuit
and movable part have a cross-sectional area of 1cm?2. What is the energy stored in the
systems? The relative permeability and the density of the magnetic material are 2000 and
7.85g/cm?, respectively.
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Figure2.6 Figure for Example 2.5
Solution: The mean length for each of the outer legs including a part of the movable part is

lo=%a+b+ta+ta+b+Lta+Lta+b+La=3a+3b=3(a+b)=3(1+5)=18cm
The mean length of the central Ieg is
le=4a+b++a=a+b=1+5=6cm
The Iength of the a|r gap is assumed to be x. The reluctance of each par is calculated as
R, = ‘url‘:OA = 2000X4;ixll()0,;10.0001 =7.1620 x 10°A - /Wb
Re = ‘ur‘luCOA = 2000X4::118:72X0.0001 =2.3873 x 10°A - /Wb
Re = urluCoA = oo = - 9577 x 10%
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The applied mmfis & = Ni = 100i where i is the required current in the coil.
The total reluctance as viewed from the magnetomotive source is

R=NRe+R, +0.5(R, +Ry)

2.3873 x 10° +7.9577 x 10°x + 0.5(7. 1620 x 10° + 7. 9577 x 10%x)
1. 1937 x 10'%x + 5. 9683 x 103

Hence, the inductance is

N _ 1002 _ 1
Lix) = 7 = 1.1937x1010x+5.9683x105  1.1937x106x+59.683
The megnetic force acting on the movable part is
f= LizdL_(X) - _ 12 1.1937x10%
20 27 (59.683+1.1937x106x)

The negative sign indicates that the force is acting in the upward direction. Therefore, the
magnitude of the force of attraction for x = lcm is

—_1 1.1937x10° 2 =372
f=-3 - =i =4.1471 x 10~i
(59.683+1.1937x106x0.01)

The length of the movable part is 3a + 2b = 13cm. The volume of the movable part is
13 x 1 = 13cm?, so the mass of the movable part is 13 x 7.85 = 102. 05g.

For the movable part to be stationary, the force of gravity must equal to the magnetic force
calculated by

fe =mg =102.05%x 103 x9.8 = 1.000 IN
that is

4.1471 x 1073 = 1. 0001
Solving this equation for the current gives

- 1.0001 _ _
PE e T 15.5294

The inductance of the magnetic circuit at x = 1em is

_ 1 _ -5
L(lem) = 1.1937x106x0.01+59.683 8.3356 x 107H

The energy stored in the magnetic field is
Wy=LLi> = L x8.3356 x 105 x 15.529% = 1.0051 x 1072/

Chapter 3 Dynamics of Electromechanical Systems
3.1 Mathematical Model

Figure 3.1 shows the model of a simple electromechanical system, which consists of three
parts: an electrical system, an electromechanical energy-conversion system, and an
mechanical system.

15
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Figure3.1 Model of an electromechanical system
Neglect losses in the electromechanical system. For the electrical system, the following
equation can be obtained from KVL:

v=Rite=Ri+% = Ri+ LD _ Rjy(x)d ;L0 &
Assume that the spring is normally unstretched at x = 0. Then, the following equation can
be obtained from Newton'’s law:

f-kx—B4 = M<Lx
where fand L(x) depend on the properties of the electromechanical energy-conversion
system.

The diffential equations above are called the mathematical model of the electromechanical
system.

Example 3.1: An electromechanical system is shown in Figure 3.2. The voltage source has
a DC voltage V,. The switch is turned on at r = 0. The bar slides along a pair of frictionless
rails in a horizontal plane. The bar has a mass of m. The resistance of the system is R.
Assume all initial conditions are zero. Determine the current i(z) and the velocity v = % of

the bar.

s

_'—-IL—? o

s(@ € »f B
£

i3

Figure3.2 Example 3.1

Solution: The induced voltage is

e(t) = IV x B = IBv(t)
From KVL, we obtain

vs(t) = Ri(t) + e(t) = Ri(t) + IBv(¢)
which implies that

i(t) = +vi(t) — Lv(r)
The induced force is

f=il xB = Bi(t) = Bv,(1) - LB (1)

16



From Newton’s law, we have

f=Bvi) = EE) = m TP
So the mathematlcal model for thls system is

dv(?) 2B L
m==+ v(r) = Ev(1)

This equation can be solved by using Laplace transform. Note that v,(¢) is a step signal and

msV(s) + %V(s) = IT‘?%
Solving it for V(s) yields

1B Vs IBVs.
_ _R S _ mR
V(S) - 22 ,232

Carrying the partial fractlon expansion gives
V(s) = 5+ —2+

252

mR

where
1BVs IBVs y
Ap =5 m§ 2 = lanz B
I}
V(H— lm% ) s=0 lm% B
22 IBV; IBVg v
AZ — s+ I“B — mR _ Vs
< mR > ( +1232 1232 1253 IB
Therefore,
s s
V(s) = 4+ —2
mR
Taking inverse Laplace transform gives
252
v(t) = - Le' F
The current in the circuit is given by
B Vs B Vv. v, B2\ oy, 1B
i(t) = —Vv(t) - V(l) = - — ?<§ - e " t) = Rx€ " !

3.2 Dynamics of DC Generators

A separetely excited dc generator delivering power to a static load is shown in Figure 3.3.
Assume that the speed of the generator is constant.

pom— -1 1=
+ R L it R T
v,

Vy €a @ Lr VF
E L

Figure3.3 Equivalent circuit of a dc generator
During the transient state, the field voltage satisfies the equation

Vf = Rflf(l) + Lf dlf(t)
and the generated voltage is

eq(t) = Kewi(t) = (Ra + Rp)ia(t) + (Lo + L) =5~
Taking the Laplace transform gives

dla(t)

17



Vi(s) = Rely(s) + Lylsly(s) — if(0)]
K.oI(s) = (Ra+ Rp)1a(s) + (Lo + L) [s1a(s) — ia(0)]
Solving these equations yields

_ Vf(S)+Lfl‘f(0)
If(s) - LfSJer
I ( ) o nglf(S)Jr(LaJrLL)ia(O) . ng(Vf(S)JrLfif(O))Jr(LaJrLL)ia(0)(LfS+Rf)
a 5) = (La+LL)S+Ra+RL - (LfS+Rf)((La+LL)S+Ra+RL)

Note that when the system reaches its steady state condition, d’%’) =0and d’jh(’) = 0, from
which the following equations are obtained for steady state operation:

Vi = Ryiy()

K.0if(©0) = (Ra + Rr)iy(0)
that is,

. vy

if(o0) = &

() = T
Example 3.2: A separately excited dc generator operating at 1500rpm has the following
parameters: R, = 0.2Q, L, = 2.5mH, Ry = 3Q, Ly = 25mH, and K. = 0.191. If a dc voltage of
120V is suddenly applied to the field winding under a load with R, = 40Q and L, = 40mH,
determine the field current, armature current, and generated voltage as a function of time,
the approximate time to reach the steady-state condition, and the steady-state values of the
field current and induced voltage.
Solution: The Laplace transform of the field voltage is V/(s) = 12. The initial conditions are
ir(0) = 0 and i,(0) = 0. The field current in s-domain is given by

i _ ViLf0)  12040.025x0 120 _ ams_ _ag00 A B _ 40 —40
i(s) =

ListRy 0025513  s(0.025s43) s(sroiz) T s(s+120) Tt T 5 T o
where
A=s s(j—f?g()) 0 da0 = 40
B = (s+120 % T 0 — 40

Therefore, the field current in time domain is
if(t) = 40 — 40e712"

18
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Figure3.4 The field current of the dc generator

The generator speed o = 22 = 22300 — 157rqd/s. The armature current in s-domain is

Keco(Vf(s) + Lfif(())) + (La + LL)ia(O)(LfS + Rf)
(LfS + Rf)((La + LL)S +R,+ RL)
0.191 x 157 x (422 +0.025 x 0) + (0.0025 + 0.04) x 0 x (0.025s + 3)
(0.0255 + 3)((0.0025 + 0.04)s + 0.2 + 40)

0.191 x 157 x 120
5(0.025s + 3)(0.04255 + 40.2)

0.191x157x120
0.025x0.0425

S <S + 0.325 > (S + oi)(iés
_ 33868 x 10°
5(s + 120.0)(s + 945. 88)

_ A, _B c

=3 T 53120 T 5194588

29. 838 + —34. 174 + 4.3355
S s+ 120 s+ 945. 88

I,(s) =

where

3.3868x10°
A=y x
5(s+120.0)(s+945.88)

_ __3.3868x10°  _
s=0  (0+120)(0+945.88) 29. 838

_ 3.3868x10° _ 3.3868x10° _
B = (s +120) s(s+120.0)(s+4945.88) | —_1o0 = (-120)(-120+945.88) 34.174
_ 3.3868x10° _ 3.3868x10° _
C = (s+945.88) s(s+120.0)(s+945.88) | o~ 94588  (-945.88)(-945.88+120) 4.3355

Therefore, the field current in time domain is
io(t) = 29. 838 — 34. 1747120 + 4, 335 50794588
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Figure3.5 The armature current of the dc generator
The induced voltage is given by
ea(t) = Kowif(t) = 0.191 x 157 x (40 — 40e71207) = 1199. 5 — 1199. 5¢~120r

1200 T

_a (V)
1000

800

600

400

0 — T T T T T T T 1
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09t 0,10

(s)

Figure3.6 The induced voltage of the dc generator
For practical purposes, the field current reaches its steady-state value after five time
constant 5t; = 55 = 5025 = 0.042s.
The final values of the field current, armature current, and induced voltage are
i) = 40A = L, i,(00) = 29. 8384 = 22D and e,(0) = 1199. 5V = K.wif(0).

R’ RatRL

3.3 DC Motor Dynamics
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Figure3.7 DC motor dynamics
A dc motor is mainly composed of a stator, rotor, and commutator. The field winding is
placed on the stator, which is also called the stator winding while the armature winding is
mounted on the rotor, which is also referred to as the rotor winding. A pulsating induced
voltage in the armature winding is converted to a dc voltage through the commutator. The
equivalent circuit for a separately excited dc motor, together with a mechanical load, is
shown in Figure 3.7.

For the field circuit, it follows from KVL that

. dif(t)
v(t) = Reigt) + Ly~

where vy, ir, Ry, and Ly are the field voltage, current, resistance, and inductance,
respectively.
For the armature circuit, according to KVL, we obtain

Va(t) = Raia() + Lo 222 + e4(1)

where v,, i, R,, and L, are the armature voltage, current, resistance, and inductance,
respectively, and e, is the back emf, which is determined by
ea(t) = Keif(Do(1)
where K, is the voltage constant and w(7) is the angular speed of the motor.
For the mechnical load, it follows from Newton’s law that

z4(t) — 1.(1) - Doo(r) = J420

where D and J are the viscous friction coefficient and the moment of inertia of the rotating
members, respectively, 7, is the load torque and 7, is the developed torque of the dc motor,
which is determined by

Td(t) = Krif(t)ia(t)
where K is the torque constant, which is the same as the voltage constant K.
Substituting for e, and z, in the three differential equations and solving them for the
direvatives, it follows that

dif(t) _ Rf . 1

i = 1, 0+ D)
dia R, - K.

,dt(z) = —7%ia(1) = Toi (Do () + 1-v4(1)
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d . . .
O~ Ke i (0ig(1) - L0 - L)

which is a set of nonlinear differential equations. In these equations, both v4(z) and v.(¢) can
be adjusted to control the speed w(r). When v«(r) is kept constant, that is, i«(¢) is constant,
the motor speed can be controlled by adjusting the armature voltage v,.(¢) and the motor is
called the armature-controlled dc motor. On the other hand, when v,(¢) is kept constant, the
motor speed can be controlled by adjusting the field voltage v/(t) and the motor is called the
field-controlled dc motor.
After the motor reaches the steady-state condition, i«(z), i.(¢), and o(¢) remain constant,
which implies that

2 = 040 <0, 40 <
Then, the following equations are obtained for the motor under steady-state condition.

vi(0) = Ryig(0)

va(oo) = Raia(oo) + ea(oo)
74(0) — 7.(0) — Dw(0) = 0
ea(0) = Keig(0)w(o)

T4(0) = Keif(0)is(0)

or
0= —Rfif(OO) + Vf(OO)
0 = —Ruia(0) — Keif(0)w(0) + va(0)
0 = Keif(0)ia(0) — 71(00) — Doo(0)
from which one can determine the quantities if(), i,(«), and () under steady-state
condition.

Example 3.3: A 240V, 12hp, separately excited dc motor has the following parameters

R, =0.28Q, L, = 2.81mH, Ry = 320Q, Ly = 2H, K. = 1.03. J = 0.087kg - m, and

D = 0.02N - m - s. It is operating on a load of 15N - m in the linear region of its magnetization
characteristic. Determine the speed, field current, and armature current under steady-state
condition.

Solution: The equations for the motor under steady-state condition are
0= —Rfif(OO) + Vf(OO)
0 = —Rgia(0) — K.if(0)w(0) + va(0)
0 = K.if(o0)ia(0) — 71(0) — Dov(0)
Solving the first equation for i/(r) gives
ifo0) = L — 20 _ 0 754

R 320
Solving the sefcond equation for i,(¢) yields
ia(00) = 252 = Z ()
Substituting this into the third equation produces
0= Keif(oo)(%ff) - %ff’”w(oo)) — 71(0) — Do(e0)
that is,

0 = K.if(0)vy(o) — K?i]%(oo)a)(oo) —171(0)R, — DR ()

Solving this for (), we have

w(0) = Keif(ova) 7L (R 1.03x0.75x240-15x0.28  _ 30)). 82y ad/s
K2i?(e0)+DRa 1.032x0.752+0.02x0.28 '

Therefore, the armature current is
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ia(o0) = 26 KD o0y = 280 102075 300, 82 = 27. 2024

3.4 Armature-Controlled DC Motors

For armature controlled dc motors, the field voltage is kept constant at V, so the field
current is constant too, which implies that d’;ﬁ” =0andifr) = Iy = :Tf The dynamic model
for an armature controlled dc motor becomes

d‘a(t) Ra : Ke

ldt = iq(t) — i Ifa)(t) + L%va(t)
do(t) Ke 1+
=2 = LeLiy(n) - 410() - o)

which is in the state-space form with state variables i,(r) and w(z).
Taking the Laplace trasform, together with initial conditions i,(0) and w(0), gives

$1u(9) = 10(0) = —1,(5) = FE100() + 7=Vals)
K.

J

so(s) — w(0) =

I (s) - %TL(S) - %a)(s)
or
Lasly(s) — Laia(0) = —=Rul.(s) — Klpo(s) + Va(s)
Jso(s) — Jo(0) = K (s) — t1(s) — Do(s)

Solving the first equation for 1,(s) yields
(Va($)+Laia(0))—Kelfo(s)
La(s) = Las+R,

Substituting into the second equation gives
Jsa(s) — Jo(0) = K I (Va(s)+Laia(0)-Kelyo(s)

Lgs+R,
that is,
_ Ked{Va($)+Laia(0))  (Kelp) o(s)
(Js + D)o (s) = Las+Ra T LustRa

Solving this for w(s) produces
KeIf(Va($)+Laia(0))+(Las+Ra) J(0)—7(s))

(Us+D)(Las+Ra)+(KIf)?
Then, the armature current is given by

71.(s) — Dw(s)

+Jw(0) — 7.(s)

o(s) =
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1(s) = Yal9) * Lala(0) = Kelro(s)
‘ L,s+R,
. _ KeI{(Va(s)+Laia(0))+(Las+Ra)(Jo(0)—7L(s))
(Va(s) + Lala(o)) Kelf (Js+D)(LaS+Ra)+(Kng)2

L.,s+R,
(Va(s)+Laia(0) )((Js+D)(Las+Ra )+(1<61f)2)
(Us+D)(Las+Ra)+(KeIp)*

KeIf(Va(s)+Laia(0))+(Las+Ra) (Jo(0)=tL(5))
(Us+D)(Las+Ra)+(KeIf)*

— K.Iy
L.,s+R,
(Va(s) + Laia(0)) (s + D)(Las + Ra) + (Kely)”)
K I(Kelf(Va(s) + Laia(0)) + (Las + Ra) (Ja(0) — 7.(s)))
(Las + Ra) ((Js + D)(Las + Ra) + (K.Ip)*)

(Va($) + Laia(0))(Js + D)(Las + Ra) + (Kelp)*(Va(s) + Laia(0))
~(Kel)* (Va($) + Laia(0)) = Ke{(Las + Ra)(J(0) = 7.(s))
(Las + Ra) ((Us + D) (Las + Ra) + (KeIp)*)
(Va(s) + Laia(0))(Js + D)(Las + Ra) — KeIf(Las + Ro)(Jo(0) — 7.(s))
- (Las + Ra) ((Us + D) (Las + Ra) + (K.Ip)*)
(Va(s) + Laia(0))(Js + D) — KI{(Jo(0) — 7..(s))
(Js + D)(Las + Ro) + (K1)

Example 3.4: (see Example 3.3) A 240V, 12hp, separately excited dc motor has the
following parameters R, = 0.28Q, L, = 2.81mH, Ry = 320Q, L; = 2H, K. = 1.03.

J =0.087kg - m, and D = 0.02N - m - 5. Determine its speed and armature current as a
function of time when it is suddenly connected to a 240V dc source at no load condition.

Solution: Prior to the application of armature voltage the motor speed and armature current
are zero. Thatis, at7 =0, i,(0) = 0 and w(0) = 0. In addition, the load torque is zero
because the motor operates at no load. That is, 7.(r) = 0. The field current is

_ Yy _ 240 _
If—R_f—%—O.75A

Note that the armature voltage v,(¢) is a step signal with amplitude of 240V, so its Laplace
transform is V,(s) = 22,
Therefore, we have
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KeI/(Va(s) + Laia(0)) + (Las + Ra) Jo(0) — 7.(s))
(Js + D)(Las + Ro) + (K. Ip)*
1.03 x 0.75 x 20
(0.087s +0.02)(0.00281s + 0.28) + (1.03 x 0.75)>
185. 4

5(2. 4447 x 107452 + 2. 4416 x 1025 + 0.602 36)

185.4
2.4447x10~*

2, 2.4416x1072 0.60236
s(sc+ - =
2.4447x10 2.4447x10

7.5838 x 10°
s(s2 +99. 8735 + 2463.9)
7.5838 x 10°
s(s + 44. 482)(s + 55. 391)
In order to determine the inverse Laplace transform, we expand w(s) into partial fractions as
o(s) = 5+ Taiam T e
where A, B, and Ccan now be determined by the root-substitution method. Thus,

_ 7.5838x10° _ 7.5838x105 _
A=s s(s+44.482)(s+55.391) | g~ (0+44.482)(0+55.391) 307. 80

w(s) =

B 7.5838x10° . 7.5838x10° _
B = (s+44.482) s(s+44.482)(5+455.391) | __44 480 (-44.482)(—44.482+55.391) 1562.9
_ 7.5838x10° B 7.5838x10° _
C=(s+55.391) s(s+44.482)(s+55.391) | — 55397  (=55.391)(=55.391+44.482) 1255.1

Finally, we can take the inverse Laplace transform of
_307.80 —1562.9 1255.1
o(s) = 5+ Trae + e 00

and get the angular velocity as
o(t) = 307. 80 — 1562. 9482 4 1255, 175531

w (rad/s) 3007

200 T

100 T

n n n n n ]
t t t t t 1
0.0 0.1 02 03 0.4 5
t(s

Figure3.8 The motor speed
The Laplace transform of the armature current is
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(Va(s) + Laia(0))(Js + D) = KI{(Jo(0) — 71.(s))
(Js + D)(Las + Ro) + (K1)
240 (0.087s + 0.02)
(0.087s +0.02)(0.00281s + 0.28) + (1.03 x 0.75)>
240(0.087s + 0.02)

(2. 4447 x 107452 + 2. 4416 x 1025 + 0.602 36)

240x0.087 240x0.02
2.4447x107* 2.4447x1074

2, 2.4416x1072 0.60236 )
sl s+ s +
( 2.4447x10~ 2.4447x107

854095 + 19634
s(s% +99. 873s + 2463. 9)

_ 854095 + 19634
s(s + 44. 482)(s + 55. 391)

In terms of its partial fraction expansion, 7,(s) can be written as

1,(s)

: _ A B C _ 7.9687 7788.8 —7796.7
fa(s) = 5+ o482 T 55301 T T s T 5ia4.482 T 5155300
where
— 854095+19634 _ __ 85409x0+19634  _
A=s s(s+44.482)(s+55.391) |9~ (0+44.482)(0+55.391) 7.9687

— 854095419634 _ 85400x(-44.482)+19634
B = (s+44.482) s(s+44.482)(s455.391) |44 480  (—44.482)(-44.482+55.391) 7788. 8

- 854095+19634 _ 85409x(-55.391)+19634
C=(s+55.391) s(s+44.482)(s+55.391) |~ 55397  (=55.391)(=55.391+44.482) 7796.77

Finally, we obtain the armature current as
ia(f) = 7. 9687 + 7788, 8e=44-4821 _ 7796, 7¢-55- 3011

i_a (A) 6001

500 7

300

200

100 T

0.3 0.4 ¢ (S%S

Figure3.9 The motor armature current
The rated current is 1,(rating) = % = 37. 3A. The starting current is way too high so that
the motor will be burnt.
Note that the mechanical time constant is 7,, = &4 = % = 4. 35s and the electrical time
constant is
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T, = = = L0EL = 1.0036 x 1077

Example 3.5: (See Example 3.3) A 240V, 12hp, separately excited dc motor has the
following parameters R, = 0.28Q, L, = 2.81mH, Ry = 320Q), L; = 2H, K. = 1.03.

J =0.087kg - m, and D = 0.02N - m - 5. Determine its speed and armature current as a
function of time when it is suddenly connected to a 30V dc source at a load of 15N - m.
Solution: Prior to the application of armature voltage the motor speed and armature current
are zero. Thatis, atr =0, i,(0) = 0 and ®(0) = 0. In addition, the load torque is 15N - m, that
is, t.(t) = 15. The field current is

_ Y 240 _
If—R—f—%—OJSA

Note that V,(s) = 22 and 7.(s) = 2.
Therefore, we have

KeI/(Va(s) + Laia(0)) + (Las + Ra) Jo(0) — 7.(s))
(Js + D)(Las + Ry) + (K1)
1.03 x 0.75 x 22 + (0.00281s + 0.28)(—)
(0.087s +0.02)(0.00281s + 0.28) + (1.03 x 0.75)>
1.03 x 0.75 x 50 + (0.00281s + 0.28)(~15)
$(2. 4447 x 10452 + 2. 4416 x 10725 + 0.602 36)
34,425 —0.042 155

5(2.4447 x 1074s% +2.4416 x 10725 + 0.60236)
34.425 0.04215

2.4447x10~* 2.4447x10~*

2 2.4416x1072 0.60236 )
slsc+ s+
( 2.4447x107* 2.4447x1074

1.4081 x 10° — 172. 41s
s(s? +99. 873s + 2463. 9)

_1.4081 x 105 — 172. 415
s(s + 44. 482)(s + 55. 391)

In order to determine the inverse Laplace transform, we expand w(s) into partial fractions as

_ A B c
w(s) = 5+ 44482 T 5355301

where A, B, and C can now be determined by the root-substitution method. Thus,

A = g L:4081x10°-172.41s
5(s+44.482)(s+55.391)

w(s) =

5_
_ _1.4081x10°-172.41x0 _ 57. 149

0 (0+44.482)(0+55.391)

_ 1.408 1x10°-172.41s _ L4081x105-172.41x(-44.482)
B = (s +44. 482) s(s+44.482)(5+55.391) | (—_gq 450 (-44.482)(-44.482+55.391) 305.98
_ 1.408 1x105-172.41s _ 1.4081x105-172.41x(-55.391) _
C=(s+55.391) s(s+44.482)(s+55.391) | i~ 55397  (-55.391+44.482)(-55.391) 248.83

Finally, we can take the inverse Laplace transform of
CO(S) _ 57.149 —305.98 248.83

s + s+44.482 + 5+55.391

and get the angular velocity as
@(f) = 57. 149 — 305. 98¢ #4821 1 248 8355391
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Figure3.10 The motor speed
The Laplace transform of the armature current is

()

Lo(s) = (Va(s) + Laia(0))(Js + D) = K. I{(Jo(0) — 71,
’ (s + D)(Las + Ra) + (K.Ip)?

30.(0.087s +0.02) — 1.03 x 0.75(-2)

(0.087s + 0.02)(0.00281s + 0.28) + (1.03 x 0.75)>

30(0.087s +0.02) — 1.03 x 0.75(-15)

5(2. 4447 x 107452 + 2. 4416 x 1025 + 0.602 36)

2.61s+12. 188

5(2.4447 x 107452 +2. 4416 x 10725 + 0.602 36)

2.61 12.188
2.4447x107* 2.4447x1074

2, 2.4416x1072 0.60236 )
sl s+ s+
( 2.4447x10~ 2.4447x10~

_ 106765 + 49855
s(s? +99. 873s + 2463. 9)

_ 106765 + 49855
s(s + 44. 482)(s + 55. 391)

In terms of its partial fraction expansion, 7,(s) can be written as

_ A B C _20.234 875.9 —896.14
a)(s) =5t s+44.482 + $+55.391 s T s+44.482 + $+55.391

where

_ 106765+49855 _ 10676x0+49855 _
A=s s(s+44.482)(s+55.391) | g~ (0+44.482)(0+55.391) 20.234

B 106765+49855
B = (s +44.482) s(s+44.482)(s+55.391)

_ 10676x(—44.482)+49855
s——44. 480 (—44.482)(—44.482+55.391)

_ 10676x(—55.391)+49855
s=-55.391  (=55.391+44.482)(-55.391)
Finally, we obtain the armature current as

ia(f) = 20. 234 + 875. 9¢~4+4821 _ 896, 14755301

_ 106765449855
C = (s+55.391) s(s+44.482)(s+55.391)

=875.9
= —896. 14
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Figure3.11 The motor armature current

3.5 Field-Controlled DC Motors

In an armature-controlled dc motor, the field current is kept at a constant level and the
armature voltage is adjusted to vary the speed below its rated speed. In a field-controlled dc
motor, however, we will change the field current in order to obtain a motor speed higher
than its rated speed.

The mathmatical model for a field-controlled dc motor is given below.

dif(r) . Ry . 1

=T v
0 — o1 L0 + -
do(r) Ke i ()i

S0 = K (Di() = Sru) - B o)

It is clear that these equations are nonlinear because of the products of the state variables
in these equations. As a result, the Laplace transform approach would not be appropriate to
get closed-form solutions for i«(), i.(¢) and o(t). However, a simplifying assumption can be
made to linearize these equations.

In an electric motor, the time constant of the electric circuit is much smaller than the time
constant of the mechnical parts. Therefore, it can be considered that the time constant of
the field circuit is much smaller than the mechanical time constant of the motor. The field
current reaches its steady-state before the armature responds to the changes in the field
current. Therefore, we have

difty Ry 1
== = —L—flf(t) + L—fo(t)
Sl = L (1) — £ L) + 7=
d (l) K. ;
0 Ke pi (1) = Lru(r) - Zoo(t)

Taking the Laplace transform gives
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1) = i0) = ~FE16) + 1=V,(0)

R, K,

SMﬂ—MQZ—th—LJM®+%ﬂMﬂ

sas) - 0(0) = L1, 9) - Loi(s) - Lags)

or
LysIf(s) - Liif(0) = ~Ry(s) + V/(s)
LaSIa(S) - Laia(o) = _Rala(s) - Kelfw(s) + Va(s)
Jso(s) — Jo(0) = Kl (s) — to(s) — Do(s)

Solving these equations yields
. Vf‘(S)+Lj’if‘(0)
If(s) - LfS+Rf
Kelf(va(s)"'laaia(o))+(LaS+Ra)(J@(O)_TL(S))

w(s) = :
(Js+D)(Las+Ra)+(Kelr)
(Va(5)+Laia(0))(Js+D)—-K I(J(0)-7 L (s))

La(s) = (Us+D)(Las+Ra)+(Kolp)®
Example 3.6: (See Example 3.3) A 240V, 12hp, separately excited dc motor has the
following parameters R, = 0.28Q, L, = 2.81mH, Ry = 320Q), L; = 2H, K. = 1.03.
J =0.087kg «m, and D = 0.02N - m - 5. It is operating on a load of 15N - m in the linear region
of its magnetization characteristic. Determine its speed, field current, and armature current
as a function of time when the field voltage is suddenly reduced from 240V to 192V at ¢ = 0.
Solution: Since the motor has already been operating at steady state on a load of
7. = 15N - m before the field voltage is suddenly changed, we have to evaluate the initial
conditions on i«(z), i.(¢) and w(r) from the equations for the steady-state operation, which is
done in Example 3.2 and the initial values are

ir(0) = 0.75A,w(0) = 300. 82rad/s,i.(0) = 27. 202A
First, we will determine the field current as follows:

I(s) = Vi+LAAO)  VA)LAA0)  ARE42x075 9610755 _ A 4B _ _ 06 015
PP = TR, T T LR 254320 s(s+160) 8 s+160 s 5+160
where
_ < 96+0.75s _ 96+0.75x0 _
A=s s(s+160) | s—¢ (0+160) 0.6
96+0.75%(~160
B = §96+0.755 = 268075x(160) 5 15
s(s+160) | s—_160 -160

Taking the inverse Laplace transform produces
ir(f) = 0.6 +0.15¢16"
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Figure3.12 The motor field current
which has a steady state value I; = 0.6A.

For the motor speed, we have

KoI{(Va(s) + Laia(0)) + (Las + Ra) (J0(0) — 7.(5))
(s + D)(Las + Ra) + (K.I)?

o(s) =

1.03 x 0.6 x (242 1 0.00281 x 27.2) + (0.00281s + 0.28)(0.087 x 300.79 — 13)

(0.087s +0.02)(0.00281s + 0.28) + (1.03 x 0.6)>

1.03 x 0.6 x (240 + 0.00281 x 27.25) + (0.00281s + 0.28)(0.087 x 300.79s — 15)

5(2.4447 x 10752 +2. 4416 x 10725 + 0.38752)

7.3534 x 105> +7.3323s + 144. 12
5(2.4447 x 107452 + 2. 4416 x 10725 + 0.38752)

7.3534x102 1 7.3323 144.12
ol e 4 2
__2.4447x10 2.4447x10 2.4447x10
2, 2.4416x1072 0.38752 )
s(s?+ s+
( 2.4447x104 2. 444710

_300. 795 +29993.s + 5. 8952 x 10°
s(s® +99. 873s + 1585. 1)

300. 7952 + 29993. s + 5. 8952 x 10°
s(s + 19. 794)(s + 80. 079)

_A B C
5 Y 5719.794 T 5180079
C371.92 . —95.274 24. 147

S T 5419.794 © 5+80.079

where A, B, and C are determined by
A = 5-300.795°+299935+5.8952x10° — 300.79x0%+29993x0+5.8952x10° _ 371 g9

s(s+19.794)(s+80.079) $=0 o (0+19.794)(0+80.079)
300.79524+299935+5. 895 2x 105 300.79%(—19.794)2+29993%(—19.794)+5.895 2x103
B:(S+19794) 95-4299935+5.895 2x _ ( ) ( )
s(s+19.794)(s+80.079) s=—19.794 (=19.794)(-19.794+80.079)
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—-95.274

C = (s + 80. 079) 300.7952+299935+5. 895 2x103 _300.79%(-80.079)2+29993x(~80.079)+5. 895 2x10°
- : s(s+19.794)(s+80.079) —80.079 (=80.079)(80.079+19.794)

147
Finally, we can take the inverse Laplace transform to get the angular velocity as
o(t) = 371.92 — 95. 274e™'979% 4 24, 1478007

w (rad/s) 3707

360
350
340
330

320

0.3 0.4 ¢ (S%S

Figure3.13 The motor speed
The Laplace transform of the armature current is

(Va(s) + Laia(0))(Js + D) = KI{(J(0) — 71.(5))
(Js + D)(Las + Ra) + (K. I)?
(22 4 0.00281 x 27.2)(0.087s + 0.02) — 1.03 x 0.6(0.087 x 300.79 — 13)
(0.087s + 0.02)(0.00281s + 0.28) + (1.03 x 0.6)>
(240 + 0.00281 x 27.25)(0.087s + 0.02) — 1.03 x 0.6(0.087 x 300.79s — 15)

I(s) =

5(2.4447 x 107452 + 2. 4416 x 10725 + 0.38752)

6.6496 x 107352 +4.7093s + 14. 07
5(2.4447 x 10752 +2.4416 x 10725 + 0.38752)
6.6496x1073 2 4.7093 14.07
2.4447x1074 2.4447x107* 2.4447x1074

2.4416x1072
s(s2+ X102 0.387524)
2.4447x10 2.4447x10

27.25% + 19263s + 57553
s(s>+99. 873s + 1585. 1)

27.25% + 192635 + 57553

s(s + 19. 794)(s + 80. 079)

A B C

s T 5119794 T 5+380.079

36.309 , 262.37  —271.48
5 5+19.794 © 51380.079

where

= 24,
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.25% X 27.2x(0)2+19263%(0)+57553
A =5 27.25*+19263s+57553 — X( ) X( ) — 36 309
5(s+19.794)(s+80.079) | ;¢ (0+19.794)(0+80.079)

2 ) “(— 2 _
B = (S +19. 794) 27.25%+192635+57553 _ 27.2x(=19.794)"+19263x(-19.794)+57553  _ 262. 37

5(5+19.794)(s480.079) |~ 19 794 (—19.794)(~19.794+80.079)
_ 27.252+192635+57553 _ 27.2x(-80.079)%+19263x(-80.079)+57553 _
C = (s+80.079) 5(s+19.794)(s+80.079) | —_g0.079 (-80.079)(-80.079+19.794) = —271.48

Finally, we obtain the armature current as
ia() = 36. 309 +262. 37¢~1979% — 271, 48¢~30-07

: : : : :
0.0 0.1 02 03 0.4 5
t(s

Figure3.14 The motor armature current

It is clear that the field current reaches its steady state at about 30ms whereas it takes
about 300ms for the speed and thereby the armature current to do so. This is consistent
with our assumption that the mechanical response is much slower than the changes in the
field current.

It is important to note that the armature current reaches its peak at 160A, which is well over
its rated value. This is mainly caused by the large mechanical time constant of the motor
that does not allow a rapid change in the back emf of the motor. Therefore, it is
recommended that the field current be gradualy varied so that high currents will not take
place in the armature circuit.
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Chapter 4 Transformers

4.1 Ideal Transformers
Figure 4.1 shows a transformer circuit.

o /S
i | .
- : : . 12 R
TR == I '
Vi,€ :\:\Nl N, [+ Vv2e | Load
—_— 1 e —

Figure 4.1 An ideal transformer
The dot markings indicate terminals of corresponding polarity, that is, if one follows through
the primary and secondary windings beginning at their marked terminals, one will find that
both windings encircle the core in the same direction with respect to the flux. Therefore, if
one compares the voltages of the two windings, the voltages from the dot-marked to an
unmarked terminal will have the same instantaneous polarity for both windings.
A transformer is called the ideal transformer if the following assumptions are satisfied:
(A1) The core of the transformer is highly permeable so that is requires vanishingly small
magnetomotive force (mmf) to set up the flux ¢.
(A2) There is no eddy-current or hysteresis loss.
(A3) There is no resistance.
(A4) There is no leakage flux.
With these assumptions, it is obvious that

dt dt 1 dt
da d(N d
e R
which implies that
Vi e N
W - (2] - Nz =a

where a is referred to as turns ratio or transformation ratio.

Since there is no loss in the ideal transformer, the input power is the same as the output
power, that is,

V1i1 = Vziz
As a result, we have

2 _ Vi

il_VZ_a

Now suppose that the instantaneous flux is ¢ = @max sin(w?). Then we have
Vi =e) = Nl% = N10O@max cos(wt) = /2 V; cos(wt)
vy =ey = Nz%‘f = NP max cos(wt) = /2 Vs cos(wt)

where V, = % and V, = % are rms values of v; and vs.

It is a common practice to express sinusoidal signals ii,iz,e1,e2,v1, and v, in terms of



phasors as 1, 7,.E1,E,. V1, and V,. Then, we have

g = fl = Vl = a
I E> V2
If Z, is the load impedance on the secondary side, then
7. - Y _ = _ 1V _ 17
Zz_zz d T,
where Z;, = XL s the load impedance as referred to the primary side. The equivalent circuit

for an ideal transformer is shown in Figure 4.2.

+ —
1

2
v v 2, v z(ij

NIINZ

Figure 4.2 The equivalent circuit of an ideal transformer

4.2 Practical Transformers

For a practical transformer, both primary and secondary windings have resistances,
denoted R, and R,, and leakage fluxes, denoted ¢;; and ¢, as shown in Figure 4.2, which
link their own windings through air and can be modelled by leakage reactances X, and X».

11 o i2

+V y

' V2,6 Load

Vi,€1 \:\,\le ¢11 ¢12*|

Figure 4.3 A practical transformer

The core of a practical transformer has finite permeability and core loss, so the primary
winding draws the excitation current from the source even though there is no load attached
to the secondary winding. The excitation current 7 is the sum of the core-loss current 7,
and the magnetization current 7, that is,

Ty=T1.+1,
The core loss can be modelled by an equivalent core-loss resistance R. and the
magnetization effect can be described by an equivalent magnetizing reactance X,,. If the
induced voltage across the primary winding is /Ifl, then

A~

- &
Ie= 4



o= Lo
m ]Xm
Note that the effective mutual flux created by T, should be equal to the mutual flux in the
core. Assume that the reluctance of the core is R. Then, we have

¢_ N17¢ _ NTi=N2To

R R
that is,

NiT4=NT,-NyI,
Therefore, one gets
Iy=Ti-Ty = 31>
which implies that the relationship among the quantities E1,Z,, 75, and 7, can be modelled

by an ideal transformer, where 75 is the load current viewed from the primary side. The
equivalent circuit for a practical transformer is shown in Figure 4.4.

Rl ]Xl .]XZ R2
+—|:kfym
v,

N1:N2

Figure 4.4 The equivalent circuit of a practical transformer

After the secondary is transformed to the primary side, the equivalent circuit becomes one
as shown in Figure 4.5.

il rgg}v\ I
" "
A IC il‘l’l A
14 E

R. X,

Figure 4.5 The equivalent circuit as viewed from the primary side
On the other hand, Figure 4.6 shows the equivalent circuit as viewed from the secondary
side.



+ . I +
I: 77
V=V, la : E
R./a X, /a’

Figure 4.6 The equivalent circuit as viewed from the secondary side
In a well-designed transformer, R,,R»,X;, and X, are kept as small as possible, and R, and
X, are kept as big as possible so that the transformer efficiency can be made as high as
possible. Since R, and X, are quite low, the voltage drop across them is also low in
comparison with the applied voltage. Without introducing any appreciable error, we can
assume that the voltage across the parallel branch is the same as the applied voltage. This
assumption allows us to move the parallel branch as shown in Figure 4.7.

& R

] .]Xl ja2X2 asz
1

Figure 4.7 The approximate equivalent circuit as viewed from the primary

4.3 Voltage Regulation and Maximum Efficiency Criterion
The voltage regulation VR% is defined as

VR% = 22 5 100
2FL

where V,y, and V,p, are effective values of no-load and full-load voltages at the secondary
terminals. For an ideal transformer, the voltage regulation is zero. The smaller the voltage
regulation, the better the transformer.

The input power to an transformer is calculated by

Sin = /‘>1/I\T
P,‘n = V[I[ COSQ[
Qm = V1[1 sin01

where cosf, is the power factor of the transformer and 0, is the power factor angle of the
transformer which is the difference between the voltage phase angle and current phase
angle.
It follows from the approximate equivalent circuit shown in Figure 4.7 that the output power
is

P, = I,V,cos0,
where cos, is the power factor of the load and 0, is the power factor angle of the load.
The copper loss is



Pew = (I5)*(R1 + a®R>)
Recall that the core loss is determined by P,, = K.f>B? + K;fB". The flux in the transformer is

almost constant, so is B. Therefore, P,, is essentially constant. The input power can also
determined by

Piy = Py +Po+ P, = 1hVhcos0y + (I)*(R1 + a*Ry) + P,
The efficiency of the transformer is
I/ZV'2cost92

= & =
=", 1,Vhcos02+(15) > (Ri+a’Ry ) +Pm
which is a function of 15. To get the load current I, for the maximum efficiency, we
differentiate n with respect with 7, and set it to be zero, that is,

V/Z cosf, (1'2 V/Z cos 02+<1/2> 2 <R1+a2R2>+Pm)—1/2 V'2 cos 6, (V/Z cos 02+21/2 <R1+a2R2>> V/Z cosf, (Pm—<1/2> 2 <R1+a2R2>)

(15Vh cos 02+ (1) * (Ri+a?Ra ) +Pu )’  (BVaeosta+ (1) (Ri+a*Ry) <P )

dn  _
i,

which implies that
P, = (1,2)2(R1 +Cl2R2) = P
The above equation indicates that the efficiency of a transformer is maximum when the
copper loss is equal to the core loss. The load current I, for the maximum efficiency is
given by
1/2" - lea";m
4.4 Determination of Transformer Parameters
Suppose a step-down transformer is tested in this section.
The Short-Circuit Test

Short-circuit the low-voltage side, increase the voltage on the high-voltage side until the
rated current is reached on the low-voltage side, and measure the voltage, current, and
power on the high-voltage side. The equivalent circuit for the short-circuit test is shown in
Figure 4.8.

R JX ja’X,  a’R,
— :_WW\__,_/YY\/\_:_
1 I I, '

2 =

Q | =

sc R jX ”

Figure 4.8 The equivalent circuit for the short-circuit test
Define Z,;, = Roy +jX.q = R1 + a*R> + j(X1 + a*X>). Then, it follows from the equivalent circuit
that
R., = Ri +a’R, = L=

I
j— VSC
|Zey| = =
_ 2 _ 2 2
Xeg = X1 +a?Xy = [1Zeg1” — R,

For most transformers, resistances and reactances can be separated by
R, = a2R2 = O.SReq




X] = a2X2 =0. 5ng
The Open-Circuit Test
Open-circuit the high-voltage side, apply the rated voltage to the low-voltage side, and
measure the voltage, current, and power on the low-voltage side. The equivalent circuit for
the open-circuit test is shown in Figure 4.9.

. 2 .
RIa> JXila JX, R,
— IYYYN_____ Y Y\ [} «— +
_| oc R
VOC
R /a® :
ha X, la’
Figure 4.9 The equivalent circuit for the open-circuit test
Let Z, = ——'——. Then it follows from the equivalent circuit that
Rela?  jXmla?
Vae _ 2V
Rela® = 3= = Re = a’3;
VOC
|Z¢| = T
2 2 2
1 1 1 ; 1| 1 1
Note that 7 = e T g e | 7| = (&mz ) + (Xm/az ) . As a result, we have
Xnla? = ——L—— = X, = =

1
Zy

1
Zy

2 2 2 2
Rela? Rela?

Example 4.1 A 50kVA 2400:240V transformer is tested and the following data were
recorded: the short-circuit test readings with the low-voltage side short-circuited are 48V,
20.8A, and 617W,; the open-circuit test readings with the high-voltage side open-circuited
are 240V, 5.41A, and 186W. Find the transformer parameters, the efficiency, and the
voltage regulation at full load and 0.8 power factor lagging. Determine the load current for

the maximum efficiency.

Solution: The transformation ratio is a = \‘;—; = % = 10. The approximate equivalent
circuit is shown in Figure 4.7. From the short-circuit test (see Figure 4.8),

Ve = 48V, 1. = 20.8A,P,. = 617TW

Ry = Lo = O = 1.4261Q

2 20.82
Zegl = 1= = 50 =2.3077Q
Xeg = 1Zeg? —RZ, = 230777~ 1. 42617 = 1.8143Q
Therefore,

Ri =0.5R,; = 0.5x1.4261 = 0.71305Q

a’R, = 0.5R,; = 0.5 x1.4261 = 0.71305Q

X1 =0.5X,y = 0.5x1.8143 = 0.907 15Q

a’X, = 0.5X., = 0.5 x1.8143 = 0.907 15Q
For the open-circuit test, the equivalent circuit is shown in Figure 4.9. From the open-circuit
test, Voo = 240V, I, = 5.41A, P,. = 186W. Therefore,

Re = a2 =10 x 22 — 309680



Zsl = = = 28 = 44.362Q

2

a -~ 10° = 4482.4Q

2 2 ’
(s |t | (o
e 14,362 30968/102

The full load current is

_ S22 _ 50000 __
Iz—v—i—w—208A

The load current referred to the primary side is
I, =1 =-1208.33 = 20.84
The core loss is the same as the input power in the open-circuit test, that is,
P, = 168W
The copper loss is
P = (I)*(R1 +a®Ry) = 20.82 x 1.4261 = 617W
The output power at full load is
P, = Valycos0, = 240 x 208 x 0.8 = 39936W
The input power at full load is
Pin =Po+Poy+ Py =39936 + 617 + 168 = 40721W
The efficiency at full load is

P, _ _
= 5= x 100 = 3238 % 100 = 98.0%

1
%y

The load voltage phasor is chosen as a reference, that is, V, = 240,.0°V and

/‘>2 = aV, = 240020V, Then, the load current phasor is
T2 =1,/ cos™'(0.8) = 208 —36.9°A
The load current phasor referred to the primary side is
T,=17, = 12082 —36.9° = 20. 82 —36.9° = 20. 8(0.8 — j0.6)A

a

It follows from Figure 4.6 that
A SN
Vi = Vo + To(Ry + a2Ra + (X1 + a°X»))
= 2400 + 20. 8(0.8 —j0.6)(1. 4261 + j1. 8143) = 2446. 3 + j12. 392

= J12.392% +2446. 37 £ 180 tan~1 (1222 = 2446.3/ 0.29°V

Now let us find the no load output voltage corresponding to Vi = 2446.3, 0.29°V by using
the approximate equivalent circuit. It is obvious that
V, =V, =2446.3 and V, = Vy/a = 244.63V. Therefore, the voltage regulation is

VR% = 28240 100 = 1. 93%

The load current for the maximum efficiency viewed from the primary side is
I, = J Pu— = [Ty =10.8544

Ri+a’R» 1.4261
and the load current for the maximum efficiency is
Ly = al,, = 108.54A

4.5 Per-Unit Computations

quantities such as voltage, current, power, reactive power, voltamperes, resistance,
reactance, and impedance can be translated to and from per-unit form as follows:

0 TP Actual quantity
Quantlty In per unit Base Value of quantity

For a single phase system, the base values must obey the electric circuit laws, that is,



P base s Qbase, VAbase = Vbasel base

Vbase

Tpase

1. Select a VA base and a base voltage at some point in the system.

2. Convert all quantities to per-unit.

3. Perform a standard electrical analysis with all quantities in per-unit.

4. Convert all quantities back to real units by multiplying their per-unit values by their
corresponsing base values.

Note that the turns ratio of an ideal transformer in per unit is one.

Example 4.2: A single-phase generator with an internal impedance Z, = 23 +j92mQ is
connected to a load via a 46kVA, 230/2300V, step-up tansformer, a short transmission line
and a 46kVA, 2300/115V, sstep-down transformer. The impedance of the transmission line
is Z; = 2.07 + j4.14Q. The parameters of step-up and step-down transformers are:

Zig = 23 +j69mQ, Zs, = 138 +j69Q, Zo, = 2.3 +j6.9Q, Zy; = 2.33 +j6.9Q,

Zy = 11.5+79.2kQ2, Z» = 5.75 + j17.25m.

Determine (a) the generator voltage, (b) the generator current, and (c) the overall efficiency
of the system at full load and 0.866 pf lagging.

Rbase s Xbase s Zbase =

Figure 4.10 The circuit for Example 4.2
Solution:The equivalent circuit of the system incorperating ideal transformers is given in
Figure 4.10.
For the generator side, choose the base values V,, = 230V and S, = 46000VA. Then, we
have

_ Sbg 46000 _
Ipe = Ve = 230 = 200A

Zpe = 7= = B2 = 1.150Q
The per-unit impedance of the generator is
Zopu = 5= = S = 0.02 +0.08
The per-unit parameters on the primary side of the step-up transformer are
Zigpu = 5= = SEEIE — 0.02+j0.06
Zpgpu = 5= = S5 = 120+ 60

For the transmission line side, choose the base values V,; = 2300V and S,z = 46000VA.
Then, we have

Sea 46000 _
Vg 2300 20A

Vi 2300
— Ypn _ 2300 _
Zp = 4 0 1150

The per-unit impedance on the secondary side of the step-up transformer is

_ ﬁ 23469 .
ZZg,pu = Zw 115 =0.02 +]0 06

The per-unit impedance of the transmission line is

Iy =




Zy 2.07+j4.14
Ztl,pu = £ =

= 0.018 +,0.036

Zot 115
The per-unit parameters on the primary side of the step-down transformer are
Zipu = F= = 222 = 0.02 +0.06
Z 1 .
Zipu = ZZ’I - % = 100 + 80

For the load side, choose the base values V,; = 115V and S, = 46000VA. Then, we have
Iy = S = 46000 _ 4004

Vi 115
= Yw _ 15 _
Zy = 44 = 45 = 0.2875Q
The per-unit impedance on the secondary side of the step-down transformer is
Z 0.00575+j0.01725 .
Lotpu = Z_ij = 0;# = 0.02 +0.06
The per-unit load voltage and per-unit load current are
v, = Yo _— 15 _
Lpu = "y, 115
i 46000
Il = L = L = 115 = 1
Pu I 400 400

The load voltage and current phasors are
Vipu = 12.0°

Tipe = 14 - 30°
2g,pu le,[m le,pu ZZl,pu
I | IS
— =
: Izl pu + 2 Il,pu +
A ZL A
ZW»P" 1, pu VL,pu

Figure 4.11 The equivalent circuit in per-unit for Example 4.2
The equivalent circuit of the system in per unit is shown in Figure 4.11. It follows from this
equivalent circuit that
Eiipu = TipuZotpu + Vipw = (12 —30°)(0.02 +j0.06) + 1 2.0°
= (cos(£) —jsin(£))(0.02 +0.06) + 1 = 1.047 + j0.042

% ~ Eipu o 104740042 . 1.047+70.042)(100—/80
Tupu = Tipu+ 2 = 14 =30° + 2= = cos(£) —jsin(£) + (LOA7+j0.082)19080)

Zoipu 1004780 1002+80>
0.872 —j0.505

A A~ A
Elg,pu = Itl,pu (ZZg,pu + Ztl,pu + le,pu) + Ell,pu

= (0.872 —j0.505)(0.02 + j0.06 + 0.018 +j0.036 + 0.02 + j0.06) + 1.047 + j0.042
= 1. 176 +;0.149

~ s Eigpu N 1.176+j0.149 . (1.176+j0.149)(120—60)
Topu = Tupu+ 722 = 0.872 — j0.505 + =02 — 0.872 — j0.505 + i

= 0.880 —,0.508

Veru = TepuZepu + Zigpu) + Ergpu = (0.880 — j0.508)(0.02 +j0.08 + 0.02 +j0.06) + 1.
176 + 0. 149

= 1.282 +0.252




(a) Therefore, the generator voltage is
Ve = Vi Vepu = 230(1. 282 +j0.252) = 294. 86 + j57.
96 = ,[294.867 + 57.96> £ tan~! (2135 ) 180
=300.5411.1°V
(b) The generator current is
T, = IngT o pu = 200(0.880 —j0.508) = 176.0 —j101.
6 = /176.07 + 101. 67 L tan™' (5218 ) 150
=203.2/ -30°A
(c) On a per-unit basis, the rated power output at a 0.866 pf lagging is
Popu = /Vl,pﬁl,pu cosf = 0.866
The per-unit input power from the generator is

Pinpu = Re[?/g,,,ﬁ;pu} — Re[(1. 282 +j0.252)(0.880 + j0.508)] = 1. 0002

Thus, the efficiency is

n = }f_ﬂp x 100 = 105306062 x 100 = 86. 6%

4.6 Autotransformers
An ideal two-winding transformer can be connected as an ideal autotransformer. There are

four possible ways to connect a two-winding transformer as an autotransformer, as shown
in Figures 4.12-4.15.

ila
+ e
+
+ .
Ela El l[l
. - I,
‘/la Nl : +
+
+ |e
. I ) A
E2 [ ’ E2a V2a
— - N2

Figure 4.12 A step-down authotransformer
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I,
A - N2 IZa
la +
+
+ | [
. I, A A
El EZa V2a

— +
IZa
+ o +
i, Il}
I, - . .
_M> N2 E2a VZa
oy
+ |e l
LS
Vla Ela El

Figure 4.14 A step-up autotransformer
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i2a
oy +
A Il
El
I, - . R
l Nl 2a Vza
o+
+.
A <7
A E, lz
‘/la la
_ — N, _

Figure 4.15 A step-up autotransformer
The following examples show how to calculate the primary winding voltage and current,

V1. and 11, the secondary winding voltage and current, V. and 124, the ratio of
transformation ar, and the apparent power input and output, Si,, and So..

Example 4.3: A 24kVA 2400/240V two-winding transformer is to be connected as an
autotransformer. For each possible combination, determine the primary winding voltage and
current, V,, and I,,, the secondary winding voltage and current, V», and I,, the ratio of
transformation ar, and the apparent power input and output, S;,, and S,, under ideal
conditions.

Solution: For the given information for the two-winding transformer, we get

Ey = Vi = 2400V,E; = V3 = 240V,a = 2= = 10,8, = 24000VA,I, = 3= = 1004, = 2 = 104

For the autotransformer shown in Figure 4.12,
Vie=Ei,=E{+E, = 2640V,V2a =FE) =E, = 240V,aT = Ve - ll,Ila =1 = IOA,Iza =0 +1

Vaq
Sina = Vial1a = 2640 x 10 = 26400VA, Soq = Vaula, = 240 x 110 = 26400VA
The nominal rating of the autotransformer in Figure 4.12 is 26.4kVA, 2640/240V.
For the autotransformer shown in Figure 4.13,
Vie=FEi.=E, = 240V, Vou = Erg = E1+Ey = 2640V,aT = e 0.091,11, =11+, = 1104, >,

V2a
Sina = Vial1a = 240 x 110 = 26400VA, Soq = Vaulay = 2640 x 10 = 26400VA
The nominal rating of the autotransformer in Figure 4.13 is 26.4kVA, 240/2640V.
For the autotransformer shown in Figure 4.14,

Vie = Eig = E1 + E2 = 2640V, Vs, = Ez = E1 = 2400V, a7 = 31~ = 350 — 1. 1,1}, = I, = 1004,

Sina = Vial1a = 2640 x 100 = 264000VA, S, = Vaulza = 2400 x 110 = 264000VA
The nominal rating of the autotransformer in Figure 4.14 is 264kVA, 2640/2400V.
For the autotransformer shown in Figure 4.15,

Vie = Eig = E1 = 2400V, Vs, = Ezq = E1 + E» = 2640V,ar = 3= = 2% — 091,11, = [ + I, = 110A

Sina = Vialia = 2400 x 110 = 264000VA,Sos = Vaul2a = 2640 x 100 = 264000VA
The nominal rating of the autotransformer in Figure 4.15 is 264kVA, 2400/2640V.

Note that the nominal rating of the autotransformer in Figure 4.14 or 4.15 is 10 times the
nominal rating of the two-winding transformer.
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Example 4.4: A 720VA 360/120V two-winding transformer has the following parameters:

Ry =18.9Q, X; = 21.6Q, Ry = 2.1Q, X5 = 2.4Q, R = 8.64kQ, X1 = 6.84kQ. The

transformer is connected as a 120/480V step-up autotransformer. If the autotransformer

delivers the full load at 0.707 pf leading, determine its efficiency and voltage regulation.
—

1211

~>

’
la 12 -

icul

Vi
RCZ ijZ ]Xz

Figure 4.16 The approximate equivalent circuit of a

Solution: The turns ration of the two-winding transformer is a = % = 3 and the turns ratio

of the autotransformer is ar = 2% = 0.25. The equivalent core-loss resistance and the

magnetizing reactance on the secondary side of the two-winding transformer is
Ry = R — 360 _ 9600, X, = Zob = 6840 _ 7600

a? 32 a? 32
The approximate equivalent circuit of the autotransformer is shown in Figure 4.16.

Assume that /‘>2a = 480,.0°V. The full load current is

Iy =11 = 4 = 28 = 24,50 To, = 2£.45°A = 2cos (455 ) +,j2sin (4575 )

and Ty, = 42 = 2= = 8/ 45°4 = 8cos (455 ) +8sin(45-%).

Hence, 7o = 15, — T2 = 8/.45° =2/ 45° =

8cos(45-%) +j8sin(45-%-) — 2cos (455 ) — j2sin(45-%) = 6cos (452 ) +j6sin (45-%-

Note that El = a/E\'z = 332. Then, it follows from KVL that
E] — 72a(R1 +jX1) — /‘>2a + 72(R2 +jX2) + Ez =0

13



or
E; = %(72a(R1 +jX0) + Vo = Ta(R: +jX2)>

L ((2cos(45E-) +j2sin(452-) ) (18.9 +21.6) + 480 — (6cos (452 ) + j6sin (452
119. 36 +j9. 5459V

Thus,
Vie = Ex + To(Ry +)X2) = 119.36 +9. 5459 + (6cos (455 ) +j6sin (4555 ) ) (2.1 +,2.4)
= 118.09 +28. 638 = [118.097 +28.638% £ tan™! (3:58.) 180 — 121512136V
On the other hand,
Tia=Toa+Toa = 5=+ = + 1o = Vie( £ + ,x%) + T,
= (118.09 +28. 638) (5ky + =15 ) +8cos (4525 ) +j8sin (4525 )
= (118.09 +28. 638) (5= —j=tr ) + 8cos(45-2-) +j8sin(45-%-)
= 5.8176+,5.5313
Therefore,

P, =Re(VaT3,) = Re((480) (2cos (455 ) - 2sin(45%;) ) ) = 678. 82W

P = Re(\?la?‘fa) — Re((118. 09 +j28. 638)(5. 8176 — j5. 5313)) = 845. 41W

N = 4= %100 = 732 x 100 = 80. 3%

If we remove the load, the no-load voltage at the secondary of the autotransformer is
Vaan, = g = L3 — 486,04V

We now can compute the voltage regulation as
VR% = Vo o () = 200 100 = 1. 24%

VoarL 480

4.7 Three-Phase Transformers

The three windings on either side of a three-phase transformer can be connected either in Y

or in A. Therefore, a three-phase transformer can be connected in four possible ways: Y/Y,
AIA, AIY, YA, as shown in Figures 17-20.

a
a, 2

Figure 4.17 Y-Y connection
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?C(C A c, A,

Figure 4.18 A — A connection

a,

A .

2y

V% R LS
Cz/.(\ﬂ‘h %’7.\ bz

Figure 4.19 A — Y connection

a,

(A?{\(\ /)/}l%ﬁ) ¢ LN%V\Q b,

/ ~p

Figure 4.20 Y-Aconnection

For simplicity, we assume that the three-phase transformer delivers a balanced load. Under
steady-state conditions, a three-phase transformer can be analyzed by (a) transforming a
A-connected winding to a Y-connected winding using A-to-Y transformation, (b) drawing a
per-phase equivalent circuit, and (c) computing quantities for the per-phase equivalent

A-to-Y transformation: If Z, is the impedance in a A-connected winding, the equivalent

15



impedance Zy in a Y-connected winding is

ZY = %ZA
and
Von = L2/~ 30
an ﬁ

Ty =3Tal —30°

A v
Fak, et

Figure 4.21 A — Y transformation

Example 4.5: A three-phase transformer is assembled by connecting three 720VA
360/120V single-phase transformers. The constants for each transformer are Ry = 18.9Q,
Xy =21.6Q, R, =2.10Q, X; = 2.4Q, R,y = 8.64kQ, X,y = 6.84kQ). For each of the four
configurations, determine the nominal voltage and power ratings of the three-phase
transformer. Draw the per-phase equivalent circuit for each configuration.

Ry r{/{?ﬁf\i

Ay

Solution: The power rating of the three-phase transformer for each configuration is
S3p = 3 x720 = 2160VA.
(a) Y-Y connection: The nominal values of the line voltages on the primary and the
secondary sides are

Vie = 3 Van, = 43 x 360 = 623. 54V

Vor = 3 Vo, = ¥/3 x 120 = 207. 85V
Thus, the nominal ratings of the three-phase transformer are 2.16kVA 624/208V Y/Y
connection. The per-phase equivalent circuit is shown in Figure 4.22 with the following
parameters:

a=30 -3 R, =Ry=18.9Q, X, = Xu = 21.6Q, R4, = R, = 2.1Q, X4, = X, = 2.4Q,

120
Rea, = Ry = 8.64kQY, Xout, = Xt = 6.84kQ)
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(b) A-A connection: The nominal values of the line voltages on the primary and the
secondary sides are

Vie = Vap, = 360V

Vor = Vaw, = 120V
Thus, the nominal ratings of the three-phase transformer are 2.16kVA 360/120V A/A
connection. The per-phase equivalent circuit is shown in Figure 4.22 with the following
parameters:

360

a= - =3,Ry, =8 = B2 - 630, X,, = H = LE =720, Ry, = £ = 2L = 0.70,

Bl

X, = 25 = 22 = 0.8Q, Rea, = S8 = B8 — 2 88kQY, X, = 222 = &84 — 2 28k

(c) A-Y connection: The nominal values of the line voltages on the primary and the
secondary sides are

Vie = Vap, = 360V

Voo = 3V, = /3 x 120 = 207.85V
Thus, the nominal ratings of the three-phase transformer are 2.16kVA 360/208V A/Y
connection. The per-phase equivalent circuit is shown in Figure 4.22 with the following
parameters:

360

a=-o=1.732,Ry =22

< =”_§)—'9=6.3Q,XA1=;—”=213—'6=7.2Q,RA2=RL=2.IQ,
Xa, = X = 2.4Q, Rep, = 8 = B84 — 2 8BKQ), X, = 20 = 584 — 2 28kQ),
Ea, = aBa,l =307, Ty, = 174, —30°
(d) Y-A connection: The nominal values of the line voltages on the primary and the
secondary sides are

Vi = V3 Va, = 43 x 360 = 623. 54V

Vor = Vaw, = 120V
Thus, the nominal ratings of the three-phase transformer are 2.16kVA 624/120V Y/A
connection. The per-phase equivalent circuit is shown in Figure 4.22 with the following
parameters:

a=3 =5196,Rs, = Ry = 18.9Q, Xx, = X = 21.6Q, Ry, = = = &L = 0.7Q,

3
Xp, = 3 = 24 2 0.80, Ria, = Ror = 8.64kQ, Xona, = Xt = 6.84kQ, B, = aEa, 2307,

3
Ty, = LT4,230°
Example 4.6: Three single-phase transformers, each rated at 12kVA 120/240V 60Hz are
connected to form a three-phase step-up Y/A connection. The parameters of each
transformer are Ry = 133.5mQ, Xy = 201mQ, R; = 39.5mQ, X, = 61.5mQ, R, = 24002,
X = 290Q. What are the nominal voltage, current, and power ratings of the three-phase
transformer. When it delivers the rated load at rated voltage and 0.8 pf lagging, determine
the line voltages, the line currents, and the efficiency of the three-phase transformer.

Solution: The nominal values of the three-phase transformer are
S3p = 3515 = 36kVA
Vig = Van, = 120V
Vi = V3 Van, = 3 x 120 = 208V
Vag = Vi, = 240V
Vor = Vap, = 240V
For the equivalent Y/Y connection, the nominal values of the three-phase transformer are
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Vig = Van, = 120V
Vie = V3 Vo, = 3 x 120 = 208V
Vahy _ 240 _
Vay = =22 = 2 = 138.56V
Vor = Vap, = 240V
Thus, the nominal ratings of the three-phase transformer are 36kVA 208/240V Y/A

connection. The per-phase equivalent circuit is shown in Figure 4.22 with the following

parameters:
a= 132 =0.866, Ra, = R. = 39.5mQ, Xa, = X, = 61.5mQ, Ry, = £ = 1335 — 44

SmQ, Xa, = 4 = L = 67mQ, Rea, = Rer = 2409, Xa, = X = 290Q

Assuming the rated load voltage on a per-phase basis for the equivalent Y/Y connection as
the reference, then

Vin, = 138.562.0°V
For a 0.8 lagging power factor, the load current is

Tay = 35 £ —cos7(0.8) = 4290/ —cos™(0.8) = 86. 6. —36.87°A

The per-phase load current in the primary winding is

~ IA2

T, = —+/30 = 228/ (30°-36.87°) = 100L —6.87°A

The per-phase voltage induced in the equivalent Y-connected secondary winding is
En, = Vg, + Ta,(Ra, +jXa,) = 138.56 + 86. 6L — 36.87°(0.0445 + j0.067)
— 138.56 + 86. 6(0.8 — j0.6)(0.0445 + j0.067)
= 145.12+2.3295 = /145,122 +2.3295% £ tan"' (3222 ) 180 — 145.147£.0.92°V
The induced emf in the Y-connected primary winding is

Ea, = aEa, 2.30° = (0.866..30°)(145. 1472.0.92°) = 0.866 x 145,
147/.(0.92° + 30°) = 125.7/.30.92°V

The excitation current is

R 2 N
Ton, = —1 - EA1<#1 + i ) = (125.7£.30.92°) (55 + 5
1

Reay Hma,
= (125.7c0s(30.92-%-) +,125. 75in(30.92%) ) (525 —j55 ) = 0.67204 — j0.10272A
Thus, the prlmary current is
Ta, =Ty, + Ty, = 0.67204—0.10272 + 100L — 6.87°
~ 0.67204 - —j0.10272 + 100 (cos (—6.87-%> ) +jsin(—6.87-5=) ) = 99. 954 — j12. 064A
and the primary phase voltage is
Vo = Ea, + Ta,(Ra, +jXa,) = 125.72.30.92° + (99. 954 — j12. 064)(0.0395 + j0.0615)
= (125.7¢0s(30.92-%-) +j125. 7sin(30.92%-) ) + (99. 954 — j12. 064)(0.0395 + j0.0615)
= 112.52+70.26 = [112.52% +70. 26> £ tan™' ({235 ) 180
= 132.65,.31.982°V
The line voltage on the primary side is

/‘>1L = ﬁ/ﬁalnlL%" = 132.653 £.61.982° = 229.76/_60. 352°V
The total input power is

P = 3Re(?/al,,jj§l) — 3Re((112. 52 +j70. 26)(99. 954 + j12. 064)) =
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3Re(10399 +8380.2) = 3 x 10399 = 31197W
The total output power is

P, = 3Re(?/a2b2722) = 3Re((138.56/.0°)(86. 6L — 36.87°)) =
3Re(138.56 x 86.6(0.8 + j0.6))
= 3Re(9599. 4 + j7199. 6) = 3 x 9599. 4 = 28798W

Hence, the efficiency of the three-phase transformer is

P, _ B
=2 %100 = 3% %100 = 92. 3%
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Chapter 5 Synchronous Machines

The basic components of a synchronous machine are the stator and rotor. The field winding
is placed on the rotor and so called the rotor winding. A DC source is connected to the field
winding through slip rings and generates a magnetic flux in the machine. Three-phase
armature windings are mounted on the stator spatially displaced by 120 degree electrical
from one another and so referred to as the stator windings. A three-phase AC source is
applied to the armature winding in a synchronous motor to drive a mechanical load and a
three-phase AC power is output from the armature winding in a synchronous generator
when it is driven by a prime mover.

Two type of rotors are used in the design of synchronous machines, the cylindrical rotor and
a salient-pole rotor.

Balanced three-phase currents generate a rotating magnetic field with a constant magnitude
and revolving around the periphery of the rotor at a synchronous speed defined by

0, =

where f'is the frequency of the AC currents and P is the number of poles in the machine.
The induced voltage of a synchronous machine is directly proportional to the product of the
flux ¢ in the machine and the speed w, of the machine, that is, E, = k¢w;.

5.1 Synchronous Generators

A generator is driven by a mechanical source, a prime mover, to turn at the synchronous
speed. When a DC source is applied to the field winding, three-phase AC voltages are
induced in the armature windings.

5.1.1 Synchronous Generators with a Cylindrical Rotor

Figure 5.1 shows an equivalent circuit for a synchronous generator with a cylindrical rotor,
where Ry, Ly, Vy, and I are the field resistance, inductance, voltage, and current, X; is the

synchronous reactance, R, /\>a, and 7, are the armature resistance, voltage, and current, /Ea
is the generated voltage (induced voltage). It follows from KVL that

Ay pas -~ A
Eo = Vi+ TaRa + 14X,

JX, R
LYY Yy
- +
Ia
i, v,

Figure 5.1 The per-phase equivalent circuit of a
Figure 5.2 shows the phasor diagram for a synchronous generator with a lagging load. 6 is
the power factor angle and ¢ is the torque angle. The torque angle is negative for the
synchronous generator.



Figure 5.2 The phasor diagram for a generator

1. The resistance Test: This test is conducted to measure the armature winding resistance
of a synchronous generator by measuring the resistance from line to line, R,, when it is at
rest and the field winding is open. If the generator is Y-connected, the per-phase resistance
is R, = 0.5R.. On the other hand, for a A-connected generator, R, = 1.5R;.
2. The Open-Circuit Test (No-Load Test): This test is performed by driving the generator
at its rated speed while the armature winding is left open. The open-circuit voltage between
any two pair of terminals of the armature windings is recorded when the field current is
varied from zero to its rated value. The graph of the per-phase open-circuit voltage versus
the field current is referred to as the open-circuit characteristic of a generator.
3. The Short-Circuit Test: This tested is carried out by driving the generator at its rated
speed when the terminals of the armature winding are shorted. The line current of the
armature winding is recorded when the field current is gradually increased. The graph of the
per-phase short-circuit current versus the field current is called the short-circuit
characteristic of a generator.
4. Calculation of the Synchronous Reactance: Let /5 be the field current which gives the
rated per-phase voltage (V...) from the open-circuit test and 1., be the phase current
corresponding to the field current I from the short-circuit test. Then, the synchronous
reactance is calculated by

\Z,| = == (Synchronous impedance Z, = R, +X;)

X, = J1Z,1> — R?
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Figure 5.3 OCC and SCC of a synchronous machine

5. The Developed Torque and Efficiency:
The output power of a synchronous generator is

P, =3V,,cos0
The copper loss in the armature winding is

P. = 3I2R,
The developed power is

Py=P,+Pe =3V, cos0+ 3R,

If R, = 0, then
Pd _ SVQiaSsinb'

The developed torque is
Pa

The input power to the field winding is
Py = Vily

If P, is the rotational loss and Py, is the stray loss, then the input power P;,(= Puech + Py) IS
Pin =Po+Peu+Pr+ Pgray + Py = 3Vl cos0 + 3I2R, + Py + Pyyay + P

The core loss P. = P, + Py + Py does not change much with the load change and can be

considered as constant. The efficiency of the generator
_ P _ 3Val,cos6
n Piy 3Valacos0+312R 4P,

reaches its maximum when
3I2R, = P.
As a result, the generator reaches its maximum efficiency when the load current is
I, = /%
6. The Voltage Regulation: The voltage regulation of a synchronous generator is defined
as the ratio of the change in the terminal voltage from no load to full load, that is,
VR% = VanL—VarL

VarL

where V.. and Vg are the no-load voltage and the full-load voltage of the synchronous

Tad =




generator.

Example 5.1: A 500kVA, 2300V, three-phase, Y-connected, synchronous generator is
operated at its rated speed to obtain its rated no-load voltage. When a short-circuit is
established, the phase current is 150A. The average resistance of each phase is 0.5Q. The
core loss is assumed to be 20kW. Determined the synchronous reactance per phase.
Calculate the efficiency and voltage regulation when the generator delivers the rated load at
its rated voltage and 0.8 pf lagging.

Solution:

The open-circuit phase voltage is V.. = 2300/,/3 = 1327.9V

The short-circuit phase current is 1, = 150A

Therefore the synchronous impedance is IZ,| = Y= = 2222 = 8,850

Thus the synchronous reactance is X = ,/IZSIZ —R2 = [8.852-0.5% =8.84Q
The rated phase voltage is V, = % = 1327.9V and it is assumed that V, = 1327.9/.0°V

The rated load current is 1, = 5299 — 125. 514 and T,=125.51/ —36.87°A

It follows from the per-phase equivalent circuit that
Eo=Vo+TuZs = 1327.94.0°+125.51 L — 36.87°(0.5 + 8. 84)
= 1327.9 + 125.51(0.8 — j0.6)(0.5 + j8. 84) = 2043. 8 + j849. 95

— 849.95 °
= /2043.87 +849. 957 £ tan! (5095 ) 180 _ 213.5/,.22.6°V

Thus, the no-load phase voltage is V. = E, = 2213. 5V and the full-load phase voltage is
Varr = Va = 1327. 9V, which implies that

VR% = 2B 100 = 66. 7%

The output power of the synchronous generator is

P, =3V,,cos0 =3 x1327.9 x 125. 51 x 0.8 = 400000W
The copper loss in the armature winding is

P, = 3I2R, = 3x125.512 x 0.5 = 23629W
The input power is

Pin = Py + Poy + P = 400000 + 23629 + 20000 = 443630W
Thus, the efficiency of the generator is

N = 4= x 100 = 4090 100 = 90.2%

5.1.2 Synchronous Generators with a Salient-Pole Rotor

Unlike a cylindrical rotor synchronous generator, a salient-pole synchronous generator has
a large air-gap in the region between the poles than in the region just above the poles, as is
evidenced from Figure 5.3. Therefore, the reluctances of the two regions in a salient-pole
generator differ significantly.

In order to account for this difference, the synchronous reactance is split into two
reactances. The component of the synchronous reactance along the pole-axis (the d-axis)
is called the direct-axis synchronous reactance X, and the other component along the axis
between the poles (the g-axis) is referred to as the quadrature-axis synchronous reactance
X,.
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Figure 5.4 A salient-pole synchronous

The armature current 71, is also resolved into two components: the direct-axis component Ta
and quadrature-axis component 7. Then, T, = T, + 1,. The direct-axis component 7,

produces the field along the d-axis and lags E. by 90° and the quadrature-axis component
1, produces the field along the g-axis and is in phase with E,..
Let £, be the per-phase generated voltage under no-load and E,and /E,, be the induced

emfs in the armature winding by the currents 7, and 7, respectively. Then @d and Eq can
be expressed in terms of X, and X, as

Eq = —jTaXsand E, = —T,X,
The per-phase terminal voltage of the generator is
Vo =Eo+Es+E;—TaRa = Ea—jTaXa—jT,X, - TuRa
= Eo—jT1aXa—j(Ta=T0)Xy - TiRa = Eu — jTa(Xa ~ X;) ~ jTX, ~ TuR
—E, —jT.X, - TR,
where E, = E, — jT.(X4 - X,), as shown in Figure 5.4.

R JX, R
Y DT oYY\ Y
A UA A—P + A—} +
E, E, ] I

Ok v O v

Figure 5.5 Equivalent circuits of a salient-pole synchronous generator
The phasor diagrams for a lagging load and a leading load are shown in Figure 5.5.



Figure 5.6 Phasor diagram of a salient-pole synchronous
The output power is

P, = 3Re</1>ﬁ:> = 3V, ,cosb

The copper loss in the armature winding is
P., = 3I’R,

The developed power is
P;=P,—P. =3V,,cos0—312R,

If R, = 0, then

Py = SV“b;?dSinlél 3(;;;2 2 2 inl25|
and the developed torque is

7y = L S V2 sinl20)
The input power to the field winding is

Py = Vi

If P, is the rotational loss and Py, is the stray loss, then the input power P;,(= Puech + Py) IS



Pin = Po+ Poy+ P+ Pyyay + Py = 3Val,c080 + 3I2R, + Py + Pyyay + Py = 3Vl cos0 + 3I2R, + P,

where P. = P, + Py + Py is the core loss. The efficiency of the generator
_ P _ 3Val,cos6
n Pin 3Valacos 0+312Ra+P

Example 5.2: A 70MVA 13.8kV 60Hz two-pole Y-connected three-phase salient-pole
synchronous generator has R, = 0, X, = 1.83Q), and X, = 1.21Q. It delivers the rated load at
0.8 pf lagging. Determine o, @a, VR%, P4, and 7,.

Solution: The phase terminal voltage is

V, = 1380 / 00 = 7967.4/.0°V
J3

The phase load current is

T, = 10x10° /36 .87° = 2928.6/ —36.87°A
ﬁxlSSOO

It follows from the equivalent circuit that
E, = Vo+j1oX, + TRy = 1967.42.0° + (2928. 6 L — 36.87°)(j1.21)
= 7967. 4 +2928. 6(0.8 — j0.6)(j1.21) = 10094 + j2834. 9

= /100942 +2834.92 / tan~! (222 180 — 10485/.15.7°V

The torque angle is 15. 7°. The d- and g-axis currents are
T4 = 1,sin(101 + 8) L. (-90° + &)
= 2928. 65in((36.87 + 15.7) %5 ) £.(-90° + 15.7°) = 2323.6L — 74.3°A
T, =1,c08(101 +5) L5 = 2928. 6c0s ((36.87 + 15.7) &) £ 15.7° = 1780, 15.7°A
The generated voltage is
Eo=E, +jTa(Xs—X,) = 10094 + j2834.9 + (2323.6 L — 74.3°)(j(1.83 — 1.21))
= 10094 + j2834. 9 + 2323.6(cos ((=74.3) %) +jsin((-74.3) =) ) (j(1.83 - 1.21))
= 11481 +,3224.7 = 114812 +3224.7% £ tan™' (221 ) 180 — 11925/ 15.7°V
or is given by
Eo=Vi+jTaXa+j1,X, + TaRa
= 7967.4/.0° + (2323. 6L —74.3°)(j1.83) + (1780,.15.7°)(j1.21) + 0
= 7967. 4 +2323. 6 (cos ((-74.3) <% ) +jsin((-74.3) %) ) (j1.83)
+1780(cos((15.7) %) +jsin((15.7) &) ) (j1.21)
= 11478 +3224. 1 = /114782 +3224. 12 £ tan™' (33322 ) 180 = 11922/.15.7°V
The developed power is
Py=Py—Po =P, =3Val,cos0 = 3 x7967. 4 x2928.6x 0.8 = 5.6 x 10’W
The synchronous speed is
o, = 2L = 2290 188, Sradls
The developed torque is
g = 2L = 28100 — 2 9708 x 10°N - m
The voltage regulation is

VR% = 12204 100 = 49.7%

__
180

5.2 Synchronous Motors
A synchronous motor is powered by a electrical source to drive a load at the synchronous



speed. When a DC source is applied to the field winding and three-phase AC voltages are
connected to the armature windings, the motor will turns its load at the synchronous speed.

5.2.1 Synchronous Motors with a Cylindrical Rotor

The equivalent circuit for a cylindrical-rotor synchronous motor is shown in Figure 5.7, which
is the same as the cylindrical-rotor synchronous generator with the reversed armature
current direction. It follows from Kirchhoff’s voltage law that

/‘>a = /E\‘a + TaRa +j/1\aXs
Figure 5.8 shows the phasor diagrams for a synchronous motor with a lagging load. 0 is the

power factor angle and 6 is the torque angle. The torque angle is negative for the
synchronous motor.

Figure 5.8 The phasor diagram

The input power of a synchronous motor is

Pin = 3Val,cos0 + Vily
The copper loss is

P. = 3[2Ra + Vf[f
The developed power is

Py =Py —Pey = 3Vil,cos0 —3I2R,
The developed torque is

Td = f;‘j

If R, = 0, then
3V,E,sind
T

If P, is the rotational loss and Piay i the stray loss, then the output power P,(= 7,0;) is
P, = Pd_Pr_Pstray




The efficiency of the motor is

n= b
Example 5.3: A 220V 60Hz 3-phase 2-pole Y-connected synchronous motor has a
synchronous impedance of 0.25+j2.5Q/phase. The motor delivers the rated load of 80A at

0.707 pf leading. Determine (a) the generated voltage, (b) the torque angle, (c) the power
developed by the motor, and (d) the developed torque.

Solution: The phase voltage is V, = % — 127V. Assume V, = 127,.0°V. The phase
armature current is 7, = 80/.45°A. It follows from the per-phase equivalent circuit that

e

Eo=Vy—TaRy—jT.X; = 1272.0° — (80L.45°)(0.25 + j2.5)
= 127 = 80(0.701 +j0.707)(0.25 +j2.5) = 254. 38 — j154. 34
= /254.387+154.347 L tan~! (55 ) 180 = 297542 - 31.2°V

54.38
The torque angle is —31.2°.
Py = Pin—Poy =3Val,cos0 + Py— (3I2R, + Pr) = 3 x (127 x 80 x 0.707 — 80% x 0.25) =
16749W
The developed torque is
Ty = 24 = 16749 _ 44 428N «m

ws 4mx60.
2

5.2.2 Synchronous Motors with a Salient-Pole Rotor

Similar to a salient-pole synchronous generator, the per-phase equivalent circiut for a
salient-pole synchronous motor is required to analyse the motor performance, which is
shown in Figure 5.9.

The per-phase terminal voltage of the motor is
Vo=FEy—Ei-E,;+TuRa = Ea+jTaXa+j1,X, + TuRa

= Eo+jT1aXa+j(Ta=T0) Xy + TuRa = Ea+ jTa(Xa ~ X,) +jTX, + TuR,
= E, +j1.X,+ 1R,

where /E; - E, +j14(Xs—X,), as shown in Figure 5.9. The phasor diagrams for a leading
load and a lagging load are shown in Figure 5.10.

R JX R
; ot — +
Eq d Ia Ia

E
Ok v ¢

Figure 5.9 The equivalent circiut of a salient-pole motor



Figure 5.10 The Phasor diagram

Then the input power is

Py = 3Re</‘>a72> = 3Vul,cos0 + Vi
The copper loss is

P., = 312Ra + Vf[f
The developed power is

Py =Py —Po = 3V.,cos0 —3I2R,

If R, = 0, then
_ 3VaEqsinid) 3Xa=Xq) :
Py = =5 V2 sinl24|

10



The developed torque is
Py

If P, is the rotational loss and P., is the stray loss, then the output power P,(= 7,0;) is
P, = Pd_Pr_Pstmy
The efficiency of the motor
=5
Example 5.4: A 208V 60Hz three-phase Y-connected salient-pole synchronous motor
operates at full load and draws a current of 40A at 0.8 pf lagging. The d- and g-axis
reactances are 2.7Q/phase and 1.7Q/phase, respectively. The armature-winding resistance is
negligible, and the rotational loss is 5% of the power developed by the motor. Determine (a)
the developed voltage, (b) the developed power, and (c) the efficiency.

Solution: The per-phase load voltage and current are V, = %840" =120,.0°V and

G
T, =40/ —cos™'(0.8) = 40/ —36.87°A.
It follows from the per-phase equivalent circuit that

ol

E, = Vi—jTaX, - TaRa = 120£.0° — (40L — 36.87°)(j1.7) = 120 — 40(0.8 — j0.6)(j1.7)

= 79.2-j54.4 = [79.22 +54.47 L tan™' (241 ) 180 — 96. 083 L — 34.48°V

which means that the torque angle is 5 = —34. 48°. It follows from the phasor diagram that
the absolute value of the angle between 7, and I, are a = 10 — ol = 1-36.87 — (-34. 48)| = 2.
39°. Therefore, the d-axis armature current is
Ty =1,sinal(5-90°) = 40sin(2. 395 £ (-34.48 — 90)° = 1. 668 L — 124. 48°
= 1. 668 (cos(—124. 48 +jsin(~124. 48-%-) ) = —0.944 — j1. 3754
(a) The per-phase developed voltage is
Eo=E, —jTo(Xq-X,) = (79.2 — j54.4) — j(~0.944 —j1.375)(2.7 - 1.7)

= 77.825 - j53.456 = |[77.825% +53.456% £ tan~! (2528 ) 180 — 94415/ —34.48°V

(b) As R, = 0, the AC input power is the same as the developed power, that is,
Py=Py—Po =Py =3Vl,co80 =3x120x40x0.8 = 11520W
Or it can be calculated by

Td =

_ 3V4E, sinld| 3(Xa—Xq) 2 s
P, = X WX, Vzsinl26|
3><120><94.415><sin(34.48¢ 3(2.7-1.7) .
— 180 L 2 pis —
= ~ o x 1202 x sin(2 x 34. 48-E-) = 11519W

(c) The output power is
P, =Pin—Po—Pr—Pgsray = Pin — P, = 11520 - 0.05 x 11520 = 10944W
and the efficiency is

P, _ —
= 2o x 100 = 1922 100 = 95%

11



Chapter 6 Induction Motors

6.1 Three-Phase Induction Motors

The essential components of an induction motor are a stator and a rotor. A balanced
three-phase winding is placed on the stator. There are two types of rotors: a
squirrel-cage rotor and a wound rotor. Rotor windings are short-circuited for both
types of rotors. When the stator winding of a three-phase induction motor is
connected to a three-phase power supply, it produces a rotating magnetic field which

is constant in magnitude and revolves at the synchronous speed given by

4nf 120f
a)SZTﬂorNs:T

where f is the frequency of the power supply and P is the number of poles. This
rotating magnetic field induces emf in the rotor winding. Since the rotor winding is
short-circuited, the induced emf produces an induced current in the rotor winding,
which, together with the rotating magnetic field, induces torque on the rotor winding
to make the rotor spin at speed on. It is important to note that the induced voltage is
proportional to the relative speed of the rotor with respect to the synchronous speed
of the rotating magnetic field. Such a relative speed is defined as the slip speed

or = ®s — ®m Or Ny = Ng — Ny
and the ratio between the relative speed and the synchronous speed is referred to as
the slip
S =

ws—om _ Ns—Np
s Ns

The motor speed can be expressed as
Om = (l - S)a)s or Nm - (1 - S)NS

The frequency of the induced voltage in the rotor is

f _ PNr _ P(Ns—Nm) _ PNS Ns—Nm _ Sf
r— 120 — 120 ~ 120 Ns

When the rotor is stationary, the slip is 1 and the rotor appears exactly like a
short-circuited secondary winding of a transformer. Therefore, an induction motor is a
transformer with a rotating secondary winding and the equivalent circuit for a
transformer can be used for an induction motor.

Rl X 1
+—|:MYW\
v,

Figure 6.1



Figure 6.3

Figure 6.1 shows a per-phase equivalent circuit for a three-phase induction motor,
where

Vl =per-phase stator voltage

T: =per-phase stator current

R1 =per-phase stator resistance

L, =per-phase stator leakage inductance

X1 = 2xnfL, =per-phase stator leakage reactance

T, =per-phase rotor current

R, =per-phase rotor resistance

L, =per-phase rotor leakage inductance

Xp = 2xnfL, =per-phase rotor leakage reactance at s=1
Xy = 2xfL, = sXp =per-phase rotor leakage reactance
Xm =per-phase magnetization reactance

R. =per-phase core-loss resistance
El =per-phase induced voltage in the stator winding
b =per-phase induced voltage in the rotor winding at s=1

P = sl/E\b =per-phase induced voltage in the rotor winding
s = I¢ + I =per-phase excitation current

¢ =per-phase core-loss current

m =per-phase magnetization current

—) =) —) > M



a =effective turns ratio
Note that

T _ /E\r _ S/E\b _ /E\b
r Rr+jX¢ Rr+jsXp %ﬂ'xb

Hence the equivalent circuit Figure 6.1 can be modified as Figure 6.2. Referring the
rotor side to the stator side, the equivalent circuit Figure 6.2 is transformed to the
equivalent circuit Figure 6.3. The approximate per-phase equivalent circuit is given as
Figure 6.4.

X
YYNM
+
\
Figure 6.4

The Stator Resistance Test
Let R be the DC value of the resistance between any two terminals of the motor.
Then the per-phase resistance is

R1 = 0.5R_ for Y-connection

Ri1 = 1.5R, for A-connection
The Blocked-Rotor Test
The rotor is held still by external torque and a variable three-phase power is applied
to the stator winding. The stator voltage is carefully increased from zero until the
motor draws the rated current. Let Vi, Iy, and Py, be the input voltage, current, and
power on a per-phase basis. Then,

_ Por
Re =
Iy

|1Ze| = %
where Z, = Re + jXe = R1 + Rz + j(X1 + X3). Therefore,
R2 = Re =R
Xe = J|Ze* - R2
For all practical purposes, it is assumed that X; = X, = 0.5X;
The No-Load Test
The rated voltage is applied to the stator winding and the motor operates without any
load. Let Vi, Inc, and Py be the input voltage, current, and power on a per-phase
basis. Let P, be the rotational loss on a per-phase basis. Then the power loss in R is
Pc = Pne — Py
and




_ Vi
R, = -,

V
1Zs] =
2 2 2
_ 1 1 _ 1 1
where Z, = - Note that |—Z¢ | = (£)"+ ()" As aresult, we have
Xm - —1

()’

Power Flow Diagram

The following are based on the exact per-phase equivalent circuit.

The input power: Pi, = 3V1l;cos6

The stator copper loss: Ps, = 313R;

The air-gap power: Py = Pin — Py = 31352 (the power consumed by £2)
The rotor copper 10ss: Proy = 313R; = sPyg

The developed power: Py = Pag — Prey = Pag — SPag = (1 — S)Pag = 313 3R
The rotational loss: Py = P¢ + Py + Pstray

The output power: P, = P4 — P,

1
2

PSCU PI’CU PI’
—> —p —> >
Pin Pag I:)d Po
Figure 6.5

The following are based on the approximate equivalent circuit.
It follows from the approximate equivalent circuit Figure 6.4 that the rotor current is

~ % v
1, = L = L /0>

. (I-5R, - 7
R1+RoHj(X1+X2)+———= ‘/(R1+Rz+@> +(X1+X2)?

So the developed power is

2 (1-5)R2
Pg = 35— = T
(R1+R2+T2> +H(X14X2)2

3yzd=Re

which is a function of s. By differentiating P4 with respect to s and setting the

derivative to zero, we can find the slip for the maximum power, which is given by
R2

R+ (R1+R2)2+(X1+X2)?

Smaxp =

and
3 vi
2 Ry+Ro+(R1+R2) Z+(X14X2) 2

The Efficiency
Using the approximate equivalent circuit, the output power can also be calculated by

I:)d,max =




Po == Pd - Pr = Pag - Prcu - Pr = Pin - PSCU - Prcu - Pr = 3V1|2 COSQ - 3|%R1 - 3|%R2 -

Therefore, the efficiency is
Po 3V1lzcos0-313(R1+R2)—Py

Pin 3V1lzcosO
Differentiating n with respect to I, and setting the derivative equal to zero gives
313(R1 + Rz) = P,
which implies that the efficiency is maximum when the sum of the stator and the rotor

cooper losses is equal to the rotational loss, that is,
_ 3Vilpcos6-2P¢
Mmax = 3y, cos

at

| = [—T—
2,max,n 312(R14R2)

The Developed Torque
Note that P4 = wmr4. Thus the developed torque is given by

2 (1-s)Rp
Vi—5——=

(1-s)Rp \? 2 1-s)R
Py (R1+R2+ < )+(x1+x2) 3\/%( SSJ 2 3V2R,

Td = om Om = (1-s)Ry \ 2 - (1-5)Ry \ 2
(H)ws[(RHRHTZ) +(x1+x2)2] sws[(RﬁRﬁTz) +(x1+x2)2]

Differentiating 74 with respect to s and setting it equal to zero, it can be shown that

the slip for the maximum torque is given by
R2

S T E——

e JRZH(X14X2)2
and the corresponding maximum torque (pull-out torque or break-down torque) is
given by

3v?
205 Ru+RE+(X1%2)? |
Example 6.1: The following test data were obtained on a 460V, 4-pole, 60Hz,
A-connected three-phase induction motor:
No-load test: power input=380W, line current = 1.15A at rated voltage.
Blocked-rotor test: power input=15W, line current = 2.1A at the line voltage of 21V.

The friction and windage loss is 21W, and the winding resistance between any two
lines is 1.2Q.

Determine (a) the equivalent circuit parameters of the motor, (b) the starting torque
and starting current by using the approximate equivalent circuit, (c) the motor speed,
developed torque, and efficiency at s=5%, (d) the maximum torque and its
corresponding speed, (e) the maximum developed power and its corresponding
speed, and (f) plot the developed torque against the slip.

Solution:

(a) The per—phase resistance of the statoris R; = 1.5R. = 1.5x 1.2 = 1. 8Q.

From the blocked-rotor test, Vor = 21V, |y = Z_ng = 1. 2A, Py = % = 5W. Therefore,

Tdmax =

the equivalent resistance is



— Por _ =
Re = m 122 = 3. 50

The rotor resistanceisR, = Re —R; = 3.5-1.8 = 1. 7Q
The equivalent impedance is
Ze| = 1= = & = 17.5Q
The equwalent reactance is
= JIZe|? -R? = J17.52 —3.5% = 17.1Q

From the no-load test, V. = 460V, Iy, = % = 0.66A, Py = @ = 127W ,

P, = % = 120W. Therefore, the equivalent core resistance is

R = L — 40 _ 176330

The excitation impedance is

1Z5) = T = 29 - 696. 97Q

The magnetization reactance is
Xn = — = L - 758760
2@ &G
(b)

24
The synchronous speed is

w5 = o = 4= _ 188 Srad/sor  Ng = o = 12290 — 1800rpm

The phase input voltage is vl = 460/.0°V.
The starting torque is

3V2R, _ 3x4602x1.7 _
Talsa = (9Ry 2 T 188.5((3540)4+(A7. 1)) 18.8N - m
Sws[(R1+R +9Re ) +H(X14X2) ] , 5(@. .
S=.

It follows from the approximate equivalent circuit that the rotor current at the time of
starting is

~ Vs _460L0° 460(3.5-j17.1) _ 460(35-j17.1) s

l2 = Ri+RaH(Xi4Xo)+ &2 35417.140 — (@5+17.1)35-17.1) —  35%47.12 5.3 -J25. 8A

The stator current at the time of starting is
Tl =T¢+T2 = —+—+ |2 —V1<—+ - >+T2
— (460/.0° )(17633 — 76) + (5.3 —j25. 8)

- (460)< 17633 ] 758.76) +(5.3-)25. 8)

= 5.56 — j26. 41 = /5. 562 + 26. 412 £ tan~*( 2%+ )18 = 27,04 - 27.0°A

(c)

The motor speed at s=0.05is oy = (1 —S)ws = (1 —0.05) x 188. 5 = 179. 1rad/s or
Nm = (1 -s)Ng = (1 —0.05) x 1800 = 1710rpm.

The developed torque is



3VIR 2
2 3x4604x1.7 _ 72

les:S% = = 2
(1- )R (1-0.05)x1.7
sws[(R1+R ) +(x1+x2)2] e 0.05x188.5((3.5+T) +(17.1)2)
7N «m
It follows from the approximate equivalent circuit that the rotor current at s=5% is
1, = A _ 460/.0° _ 460(35.8-j17.1) _ 460(35.8-j17.1)
 RptRe+ (XX )+ ER2 IRz TR 14 00T © (35.8+j17.1)(35.8-j17.1)  35.8%417.12

T

= 10. 46 — j5.0 = ,/10 467 +5.02 L tan L (28 )10 — 11,6/ - 25.5°A
The stator current at the time of starting is
Ti=Ty+T =2 +V1+I2—V1<—+1>+T2
= (460,0° )(17633 ) +(10. 46 - 5.0)
~ (460) (755 - izgisg ) + (10. 46 - 5.0)

= 10.72-j5.61 = /10. 722 + 5. 617 £ tan} (22 )28 — 12.1/ - 27.6°A

The input power is

Pin = 3V1l1€0s0 = 3 x 460 x 12.1 x cos(27. 6% ) = 14798W

The stator copper l0ss is Psoy = 313R; = 3 x 11.62 x 1.8 = 727W(

The air-gap power is Pag = Pin — Psew = 14798 — 727 = 14071W

The rotor copper loss: Py, = 313R; = 3 x 11.6%2 x 1.7 = 686W

The developed power: P4 = Pag — Prey = 14071 — 686 = 13385W

The output power: P, = P4 — Py = P4 — P — Py = 13385 — (380 — 21) — 21 =
13005W

The efficiency is

_ P _ 13005 _
N = £ x 100 = 2% 100 = 87. 9%
(d)

The slip for the maximum torque is

Smaxs = ———— = —2LL_— = 0.099
’ JR+(X1+X2)? J182+(17.1)2
and the corresponding maximum torque (pull-out torque or break-down torque) is
given by

3V% _ 3x4602 = 88.6N -m

Tdmax =
2ws[R1+1/R§+(x1+x2)2 ] 2x188, 5x(1.8+,/1.82+(17.1)2 )

The speed is
= (1 -5)Ng = (1 -0.099) x 1800 = 1622rpm

(e)
The slip for the maximum developed power is

R2 1.7
Smax,p = = = 0.089
P R+ (R1+R2)2+(X1+X2)? 1.7+43.5%2+17.12

and



vi 3 4602
Pomax = = L =3 — 15147W
’ 2 Ry+Ro+(R1+R2) Z+(X14X2) 2 2 35435241717

The speed is

Nm = (1 —-5)Ng = (1 —0.089) x 1800 = 1640rpm
or

om = (1 —S)ws = (1 —0.089) x 188. 5 = 171. 7rad/s
The developed torque is

rq = Pamx _ 187 _ gg oN Ly

®Om 171.7
() The relationship between the developed torque and the slip is given by
g = 3V2R, _ 3x4602x1.7 _
sws[(RﬁRH@)ﬁ(xﬁxz)Z] 5x188.5x((3.5+W)2+(17.1)2)
5725.0

s((%(l. 75-1.7)-3.5) %4292, 41)

Torque (Nm) 100
90
80
70
60
50
40
30
20
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Figure 6.6
Some Important Observation:
(1) When the motor is operating near its rated slip, which is less than 10%, the
developed torque is directly proportional slip.

(2) For a constant slip, the developed torque is directly proportional the square of the
applied voltage.

6.2 Single-Phase Induction Motors

6.2.1 Double Revolving-Field Theory

Similar to three-phase induction motors, single-phase motors have the stator and
rotor with the rotor winding short-circuited. Unlike three-phase induction motors,
single-phase induction motors have only one phase winding in the stator. A
single-phase AC voltage is applied to the stator winding, which produces an AC



current in the stator winding. Suppose that i(t) = I, cos(wt). Then, the resultant
air-gap magnetic flux density is given by

- - - -
B = Bmax COS(COt)l = BCW + BCCW

where §CW and §CCW represent the clockwise and counterclockwise rotating magnetic
fields, respectively, defined by

Bew = 0.5Bp cos(wt) i — 0.5By, sin(wt) |

Bcew = 0.5Bp cos(wt) 1 + 0.5B, sin(wt) |
The equation above implies that the sum of the clockwise and counterclockwise
rotating magnetic fields is equal to the stationary pulsating megnetic field, that is, the
stationary pulsating megnetic field can be resolved into two rotating magnetic fields,

each of equal magnetude but rotating at the synchronous speed in opposite

directions. The synchronous speed is determined by

4rf 120f
a)SZTﬂorNs:T

Suppose that the motor rotates in the counterclockwise direction at speed wn,. Define
s = 220 Then, §CCW is called the forward magnetic field, denoted §f, rotating at the
synchronous speed of wss = s while §CW the backward magnetic field at wps = —ws,
denoted By. The slip of the motor is s; = 252" — s with respect to B and

fs

_ D e— _ _ . -
Sp = Lom _ —oson _ 20505 0n _ ) _ g yith respect to By.

Similar to three-phase induction motors, single-phase motors can be analyzed by
using the equivalent circuit. Figure 6.7 shows the equivalent circuit for a single-phase
AC motor at still, which is equivalent to the circuit with the effects of the forward and
backward magnetic fields separated, as shown in Figure 6.8. For a motor running at
speed o, the effective rotor resistance changes with the slip. The rotor resistance is
B2 with respect to B while % with respect to By. The final equivalent circuit is
shown in Figure 6.9.

Figure 6.7



Define
Z]_ = Rl +jX1

R, Xy
—— A A —
+ |"1
v,
Figure 6.8
R, X,
- 3} /YY) —
+ |A1
Vi
Figure 6.9
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_ AV Xm(Rals+iX2) iXm(R2/s+jX2) ((R2/s=j(X2+Xm)))
Zf N Rf + fo =0.5 Ro/sH(Xo+Xm) 0.5 (R2/s+j(X2+Xm)) (Ra/s—j(X2+Xm))
Xm ((R2/s)2+X2(X2+Xm)-iXm(R2/s)) XZ (R2/s)+Xm ((Ra/s)2+X2(X2+Xm))

= 0.5 (R2/8)2+(X24Xm)? = 0.5 (R2/3)%+(X24Xm)?
_ X2 (Rals) . 5Xm<(R2/S)2+X2(X2+Xm)>
Y (RofS) 2+ (X4 Xm )2 19 (R2/8)2+(X2+Xm)?
_ ; _ Xm(R2/(2-8)+jX2) Xm(R2/(2-8)+jX2) ((R2/(2-8)—j(X2+Xm)))
Zo = Rp +JXp = 0'5R2/(275)+j(Xz+Xm) o 0'5(R2/(27s)+j(X2+Xm))(Rzl(Z—s)—j(XerXm))
=0 5J'Xm((Rz/(ZfS))2+x2(Xz+xm)fjxm(Rz/(ZfS))) _0 5X%(Rz/(zfs))ﬂ'xm<(R2/(27S))2+X2(X2+Xm))
e (R2/(2-8))2+(X2+Xm)? ' (R2/(2-5))2+(X2+Xm)?
_ X&(R2/(2-5)) . Xm ((R2/(2-5))2+X2(X2+Xm))
T T (Rl(2-8)) 2+(X o+ Xm )2 10 (R2/(2-8))%+(X24+Xm)?
_ X4 (Ra/s)
Ri =0 (R2/s)2+(Xo+Xm)?
Xm ((R2/$)%+X2(X24+Xm
xf _ 0.5 (( 25) +X2(X2+ ))
(R2/$)?+(X2+Xm)?
R, — Xh(Ra/(2-5))

(R2/(2-5))2+(X2+Xm)2
Xm((R2/(2-5))2+X2(X2+Xm))
(R2/(2-5))2+(X2+Xm)?2

Xp = 0.5

Then,
Zin = Z]_+Zf+Zb
Thus, the stator current is
T, = &
1= Ze
The input power is
Pin = Re[vlTIJ = V1l c0s0

The stator copper loss is
Psew = I%Rl

The air-gap power due to the forward magnetic field is
Pagt = I2Rf = 0.513 52

The air-gap power due to the backward magnetic field is
Pagp = iRy = 0.5135%

The forward rotor copper loss is
Preut = O-5|§fR2 = SPagt

The backward rotor copper loss is
I:)rcub = O-SI%bRZ = (2 - S)Pagb

The power developed by the forward magnetic field is
I:)df = I:)agf - I:)rcuf = (1 - S)Pagf

The power developed by the backward magnetic field is
Piab = Pago — Preun = —(1 = $)Pags

The total developed power is
Py = Pgi + Pgp = (l — S)(Pagf — Pagb) = (l — S)Pag

11



So, the net air-gap power is

Pag = I:)agf - F>agb
The mechanical developed power is

Py = (1 =5)Pag = t4om = (1 - S)T40s
The developed torque is

_ Pg _ (1-8)Pag  Pagi-Pagh  Pag Pagh
= on T @oes s = s T "o, — Tfd = Thd
The output power is
Po = I:)d - I:)r

where the rotational loss is Py = P¢ + Py + Pstray-

Example 6.2: A 4-pole 110V 50Hz single-phase induction motor has R; = 2Q,

X1 = 2.8Q, R, = 3.8Q, X; = 2.8Q, and X, = 60Q. The rotational loss is 20W.
Determine the shaft torque, the motor efficiency when the slip is 4%, and the
developed torque characteristics.

Solution:The synchronous speed is

w5 = T2 = 4150 _ 157, 08rad/s or Ny = 2% = 120%0 — 1500rpm

The impedances are
Zl = Rl +jX1 = 2+]28

7. — Ri +iXs — 0.5]Xm(0.5R2/s+j0.5Xp) Xm(Rofs+jX2) 0 5j60(3.8/0.04+j2.8)
£ = R IR = S oixmr0BRsH05%s) 2 P RolsjorXm) " ©3.8/0.04+](2.8:60)
_ -168+j5700 (-168+j5700)(95-j62.8) 3.42x10%+j5.5205x10% .
= 0.5 ms = 05 mimaesizs = 00 o = 13. 185 + j21. 284Q
7r = Ry + iXp = 2Xm[05R2/(2-5)+05X2] XnlRel(2-5)iXz] _ (y  60x(3.8/(2-0.04)+]28)
b = Rp +JAp = 0.5]Xm+[0.5R2/(2-5)+j0.5X2] 7 Ra/(2-8)+j(Xo+Xm) ~ * 3.8/(2-0.04)+j(2.8+60)
_ -168.0+j116.33 (~168.0+j116.33)(1.9388-j62.8) _ 0.5(6979.8+j10776) .
= 0.5 osaimes — 0O LomsjezsLomsiezs —  romems -~ 000406+ L.
364 9Q2

Zin =21 +Zi+2Zp = (2+)2.8) + (13. 185 + j21. 284) + (0.88406 + j1. 3649) = 16.
069 + j25. 449Q
Thus, the stator current is

T, % - _uoco 110/ 0° ___uoo  _ g
6547/ —57. 731°A
~ RS A~ ix ~ j60
Typ= 2, =X § 0 36547, 57 731°)
S24(E+A) B2 4i(Xa+Xm) Sor+(2.8+60)
60/.90°)(3. 65474 —57.731° 60/.90°)(3.6547 /. ~57.731° .
= X = BTCEE T ) 192564 - 1. 198°A
. . .
|(38.)+(2.8+60)2 £ tan1<—2-gf86° )%
X 0.04
~ i ~ X ~ 60
Ty = —2  _F,— X §,_ __ 0 (36547, _57. 731
R (X Ry . 3.8 H ' )
2(235) + (72+X7m L+ (X24Xm) 7004 11(2:8+60)
60/.90°)(3. 6547/ —57.731° 60/.90°)(3.6547 /. —57.731° .
= — &N L = EIO L)~ 3.4901/ — 55. 963°A
> . .
J(28) 284607 £ tanl(_zgggzj )Lw

The input power is

12



Pin = Re[ VsT] | = Vilicosd = 110 x 3. 6547 x cos(57. 731%;) = 214. 63W

The stator copper loss is
Psw = I17R1 = 3. 65472 x 2 = 26. 714W
The air-gap power due to the forward magnetic field is
Pat = I2Rf = 3. 65472 x 13. 185 = 176. 11W or = 0.51%52 = 0.5 x 1.

9256238 — 176. 13W

The air-gap power due to the backward magnetic field is

Pago = 13Ry = 3. 65472 x 0.88406 = 11. 808W or = 0.513,22 = 0.5 x 3.

49012 x 28 — 11. 808W

The net air-gap power is

Pag = Pagt — Pagh = 176. 13 — 11. 808 = 164. 32W
The mechanical developed power is

Py = (1 —S)Ps = (1 —0.04) x 164. 32 = 157. 75W
The output power is

P, = Pg — P, = 157. 75 - 20 = 137. 75W
The efficiency is

_ 137.75 _
= Jaes < 100 = 64.2%

The motor speed is

om = (1 -s)ws = (1 —0.04) x 157. 08 = 150. 80rad/s
The motor shaft torque is

To = +2 = 2L _ 0 91346N - m

om 150.80
The developed torque of the forward and backward magnetic field is
r = Par ViRs _ 110%Ry
o = Ton T 0s(R1+Ri+Ro)2H(X1X+X0)?)  157.08((2+R1+R0)2+(2.8+Xr+X5)?)
- VERy _ 1102Ry,
db ws((R1+Rf+Rb)2+(X1+Xf+Xb)2) 157.08((2+Rf+Rb)2+(2.8+Xf+Xb)2)
with
2
R = 0.5 602(3.8/s)
(3.8/5)2+(2.8+60)2
60((3.8/5)2+2.8(2.8+60
X: = 0.5 ((3.8/5)%+2.8(2.8+60) )
(3.8/5)2+(2.8+60)2
R 602(3.8/(2-s))
b =

(3.8/(2-5))%+(2.8+60)?
60((3.8/(2-5))%+2.8(2.8+60))

Xp = 0.5 (3.8/(2—5))2+(2.8+60)2

13



Torque (Nm) *T —

Figure 6.10 74 (thick solid line) 74 (dashed line); z¢4 (thin
B 1102Ry _ 110%Rp
B 157.08((2+R1+Rp)*+(2.8+X+Xp)?) 157.08(((2+R1+Rp)*+(2.8+X+Xp)?)

6.2.2 Types of Single-Phase Induction Motors

It is observed from Figure 6.10 that the developed torque is the torque developed by
the forward magnetic field less the torque developed by the backward magnetic field.
It is noted that 74 and 74, are the same at the starting moment, so the starting torque
is zero, which means that this motor cannot start by itself. However, by introducing
an extra winding and some capacitors, single-phase induction motors can be made
self-starting.

1. Split-Phase Motors

A split-phase induction motor has two separate windings: main winding and auxiliary
winding. They are placed in space quadrature and connected to a single-phase
power source. The main winding has a low resistance and high inductance and
carries current to establish the main flux at the rated speed. The auxiliary winding has
a high resistance and low inductance and is desconnected from the supply by a
centrifugal switch when the motor reaches a speed of nearly 75% of its synchronous
speed.

At the time of starting, the main winding current lags the applied voltage by almost
90° owing to its high inductance (large number of turns) and low resistance (large
size wire) while the auxiliary winding current is essentially in phase with the applied
voltage due to its low inductance and high resistance. Since the two windings are
placed in space quadrature and carry out-of-phase currents, a rotating magnetic field
is produced in the air-gap and the motor is able to rotate by itself.

2. Capacitor-Start Motors

In split-phase motor, the main winding current does not lag the auxiliary winding

current exactly by 90°. However, by connecting a capacitor in series with the auxiliary
winding, it is possible to make the main winding current lag the auxiliary winding

14



current exactly by 90°.
3. Capacitor-Start Capacitor Run Motors

The power factor for both split-phase and capacitor start motors is low and so is
efficiency, usually 50%-60%. The efficiency can be improved by employing another
capacitor when the motor runs at the rated speed. This led to the development of a
capacitor-start and capacitor-run motor.

4. Permanent Split-Capacitor Motors

The permanent split-capacitor motor is developed by removing the start-capacitor and
cetrifugal switch from the capacitor-start capacitor-run motor.

Chapter 7. Special Motors

7.1 Universal Motors

A DC series motor specially designed for AC operation is usually referred to as a
universal motor. The equivalent circuit is shown in Figure 7.1

Figure 7.1
The phasor diagram for a lagging load is shown in Figure 7.2.

Figure 7.2
Example 7.1: A 120V 60Hz 2-pole universal motor operates at a speed of 8000rpm
on full load and draws a current of 17.58A at a lagging power factor of 0.912. The
impedance of the series field winding is 0.65+j1.2Q. The impedance of the armature

15



winding is 1.36+j1.6Q. Determine (a) the induced voltage, (b) the power output, (c)
the shaft torque, and (d) the efficiency if the rotational loss is 80W.

Solution: From the equivalent circuit, we have
Ea = Vs — Ta(Rs + Ra + jXs + jXa) = 120 — (17.58/ — 24.22°)(0.65 + 1.36 + j(1.2 + 1.6

120 — 17.58(cos(—24.22% ) + jsin(-24.22-%-))(0.65 + 1.36 + j(1.2 + 1.6))

= 67.581 — j30. 395 = /67. 5812 + 30. 3952 £ tan~! (22> )18 = 74,14 - 24,
22°V
Note that the induced voltage is in phase with the armature current.
The input power is
Pin = Vslacos6 = 120 x 17.58 x 0.912 = 1924W
The copper loss
Paw = 12(Rs + Ra) = 17.582%(0.65 + 1.36) = 621. 2W
The developed power is
Py = Pin — Py = 1924 — 621.2 = 1302. 8W
The output power is
P, = Pg — P, = 1302. 8 — 80 = 1222. 8W
The efficiency is

N = £ x 100 = 1228 » 100 = 63. 6%

The motor speed is

O = % = % = 837. 76rad/s

The shaft torque is

_ Po _ 12228 _ .
To = on = 537 % 1. 46N . m

7.2 Permanent DC Motors

A DC motor with the magnetic field being produced by permanent magnets is called
the permanent DC motor. The equivalent circuit for a permanent DC motor is shown
in Figure 7.3.
The dynamical equations are given by
ea(t) = Ka@aw(t)
Ty(t) = Kaq)aia(t)
Va(®) = Raia(t) + La™22 + Ka®a0(t)
390 = Ka®aia(t) - 71(t) - Doo(t)
The steady-state quantities are calculated by letting
a(0) = Ka®am(0)
74(0) = Ka®aig(0)
Va(0) = Rala(0) + Ka®aw(0)
0 = Ka@ala(0) — 71.(0) — Do ()

dia(t)

5 and % be zero, that is,

16



Figure 7.3

Example 7.2: Calculate the magnetic flux in a 200w, 100V PM DC motor operating
at 1500rpm. The motor constant is 85, the armature resistnace is 2Q2, and the
rotational loss is 15W.

Solution: () = &0 — 220 — 157, 08rad/s

The developed power is Py = Po+ Pr = 200 + 15 = 215W

The developed torque is 74(w) = m(w) = 22 = 1.3687N - m
It follows from 74(00) = Ka®,ia(0) that
(OO) — Td(oo)
Ka®a

Substituting this into v4(0) = Raia(0) + Ka®@aw(0) gives
Va(®) = Rat + Ky ®a0(0)

that is,

100 = 2538 + 85 x 157. 0803

or
8500, = 2 x 1. 3687 + 852 x 157. 08d2
Solving this for positive @, produces

, = SO0 S2A OB _ 7 1574« 103 and 3. 3723 x 107
2x854x157.08

Because ea(0) = Ka®am(0) = 85 x 3. 3723 x 1074 x 157. 08 = 4. 5026V is too smalll
and ea(©) = Ka®am(0) = 85 x 7. 1524 x 102 x 157. 08 = 95. 497V is reasonable, so
= 7.1524 x 10~*Whb.

7.2 Stepper Motors

2
9m = Fee
_ 2
Om = Fa)e

2
Nm = 5 Ne

1
Ne = S5 Mpulses

Nm = ﬁnpulses
where P is the number of poles, N is the number of phases, 6, is the mechanical
angle, 0. is the electrical angle, o, and n,, are the mechanical speed, w. and n, are
the electrical speed, npuises Is the number of pules per minute.

Example 7.3: A three-phase permanent-magnet stepper motor required for one

17



particular application must be capable of controlling the position of a shaft in steps of
7.5°, and it nust be capable of running at speeds of up to 300rpm. (a) How many
poles must this motor have? (b) At what rate must control pulses be received in the
motor’s control unit if it is to be driven at 300rpm?

Solution: (a) In a three-phase stepper motor, each pulse advances the rotor’s
position by 60 electrical degrees. This advance must correspond to 7.5 mechanical
degrees. Solving 6, = %09 for P yields

P =24~ =252 - 16 poles
(b) SOlVlng nm = ﬁnpubes fOI’ npu|ses glVeS
Npuises = NPNp = 3 x 16 x 300 = 14400 pulses/minute=240 pulses/s
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Formula Sheet for the Final Exam:
B = uH,¢ = BA uo = 4r x 10"H/m
¢ =&, F =Ni,®R =L

R’ A
_oda g _ - A _ N
¢ = B NpL= ok
W¢(1,X) = 2—1L/12,W¢(i,X) = %le
FU_WeOW 1000 ¢ We0 15200
B ox 2 dx ' ox 2 dx
di di . . - .
&1 = 582 = 55 A1 = Au + Az = Luis + Lalz, A2 = A + A2 = Laris + L2

W4(A1,22,0) = 2THAf + T1adida + 3T 2225, Wy(in,i2,0) = TLuif + Liisiz + L2205

_ Wy(Ah20) Lj20bu®) o5 dle®) 152 dLaa@)
T T e T 217w 1127 4p 227 do
_ OWy(ini20) _ 1:2dbu@®) | ;o dli®) | 1:2 dl(d)
T—T— 2|1 a0 + 1112 do +2|2 do
= =
e=IVxB,f=il xB
ea(t) = Keir(Ma(t), 7q(t) = K.if(Dia(t)
o(s) = KeIf(Va(5)+Laia(0))+(LaS+Ra)(JCl)2(O)_TL(5))
(JIs+D)(Las+Ra)+(Kelt)
(Va(s)+Laia(0))(Is+D)~Kelt(Jw(0)-7L(5))
la(s) = 2
(Js+D)(Las+Ra)+(Kelr)
_ Vi(9)+Liit(0)
If(S) - Lis+Rs
N $ ~ -~
ZY = %ZA1Van = Y/%bL _300’ IA/ = ‘/§IAL - 30°
. A A o T 17 °
A-Y connection: Ea, = aEa, £ —30°, 1A, = 51,4 - 30
T

. " A ~, 1
Y-A connection: Ea, = aEa,£2.30% 14, = 3
Arf

Om = (1_8)603,@5 = T

/E\a = /E\a —jTa(Xq - Xq)(synchronous generator),/E\’a = /E\a +jTa(Xq — Xq)(synchrono
motor)

n, -30°

us

3 3\/2 (1-s)Rp 3V2R
Py = 3130% = e Td = o
S (RﬁRH@)ZHXﬁXz)Z Sws[(R1+RTZ)2+(X1+X2)2]
R vi
Smaxp = : Pamax = % -
Ro+{(Ri+R2) 2+ (X14X2)2 Ri+R2+(R1+R2)%+(X1+X2)?
Sy = —F2 o Sl
mexr JREH(X14+X2)? o Zws[R1+1/R§+(X1+X2)2:|
_ i B ij(R2/5+jX2) _ sz(RZ/S) . Xm<(R2/S)2+X2(X2+Xm)>
Zi = Re+)X¢ = 0.5 Ra/stj(X2+Xm) 7 (Rafs)+(X2+Xm)2 +10. (R2/8)*+(X2+Xm)?
_ v £ Xn(Re/2-5)4iX2) Xh(Ra/(2-5)) i 5 Xn(R/29)*Xo(Xz X))
Zo = Rp +JXp = O'5R2/(2—S)+j(Xz+Xm) B 0'5(R2/(2—S))2+(X2+Xm)2 105 (R2/(2-5))*+(X2+Xm)?

Pagt = 1Rr = 0.51552, Pogn = 1{Ry = 0.5155%

Pot = Pagt — Preut = (1 = S)Pagf, Pab = Pagb = Preun = —(1 = S)Pagp
Pg = (1 - 5)Pag,Pag = Pagt — Pags

Py = (1 -5)Pag = tgom = (1 - )70
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_ Pagf Pagb _
Td = %, — "ws — Tfd — Thd

ea(t) = Ka®ao(1),74(t) = Ka@aia(t)
Qm = %Heynm = %npulses

20



	ENGI-5051FA06 [Notes].pdf
	ENGI-5051FA06 [Notes].pdf
	ENGI-5051FA06 [Notes].pdf
	ENGI-5051FA06 [Notes Chp4].pdf

	ENGI-5051FA06 [Notes Chp5].pdf

	ENGI-5051FA06 [Notes Chp6].pdf



