
Chapter 4 Transformers
4.1 Ideal Transformers (Lecture 12)
Figure 4.1 shows a transformer circuit.
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Figure 4.1 An ideal transformer
The dot markings indicate terminals of corresponding polarity, that is, if one follows
through the primary and secondary windings beginning at their marked terminals, one
will find that both windings encircle the core in the same direction with respect to the
flux. Therefore, if one compares the voltages of the two windings, the voltages from
the dot-marked to an unmarked terminal will have the same instantaneous polarity for
both windings.
A transformer is called the ideal transformer if the following assumptions are satisfied:
(A1) The core of the transformer is highly permeable so that is requires vanishingly
small magnetomotive force (mmf) to set up the flux .
(A2) There is no eddy-current or hysteresis loss.
(A3) There is no resistance.
(A4) There is no leakage flux.
With these assumptions, it is obvious that

v1  e1  d1
dt  dN1

dt  N1
d
dt

v2  e2  d2
dt  dN2

dt  N2
d
dt

which implies that
v1
v2  e1

e2  N1
N2

 a
where a is referred to as turns ratio or transformation ratio.
Since there is no loss in the ideal transformer, the input power is the same as the
output power, that is,

v1i1  v2i2

As a result, we have
i2
i1
 v1

v2  a
Now suppose that the instantaneous flux is   max sint. Then we have

v1  e1  N1
d
dt  N1max cost  2 V1 cost

v2  e2  N2
d
dt  N2max cost  2 V2 cost
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where V1 
N1max

2
and V2 

N2max

2
are rms values of v1 and v2. Note that there is no

phase shift between e1 and e2.
It is a common practice to express sinusoidal signals i1, i2,e1,e2,v1, and v2 in terms of
phasors as


I 1,


I 2,E1,E2,V1, and V2. Then, we have


I 2

I 1

 E1

E2
 V1

V2
 a

If

Z2 is the load impedance on the secondary side, then

Z2  V2


I 2


V1
a

a

I 1

 1
a2

V1

I 1

 1
a2


Z1

where

Z1  V1


I 1

is the load impedance as referred to the primary side. The equivalent
circuit for an ideal transformer is shown in Figure 4.2.
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Figure 4.2 The equivalent circuit of an ideal transformer

4.2 Practical Transformers
For a practical transformer, both primary and secondary windings have resistances,
denoted R1 and R2, and leakage fluxes, denoted l1 and l2 as shown in Figure 4.2,
which link their own windings through air and can be modelled by leakage reactances
X1 and X2.
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Figure 4.3 A practical transformer
The core of a practical transformer has finite permeability and core loss, so the
primary winding draws the excitation current from the source even though there is no
load attached to the secondary winding. The excitation current


I  is the sum of the

core-loss current

I c and the magnetization current


I m, that is,

2




I  


I c 


I m

The core loss can be modelled by an equivalent core-loss resistance Rc and the
magnetization effect can be described by an equivalent magnetizing reactance Xm. If
the induced voltage across the primary winding is E1, then


I c  E1

Rc

I m  E1

jXm

Note that the effective mutual flux created by

I  should be equal to the mutual flux in

the core. Assume that the reluctance of the core is . Then, we have
 

N1

I 
  N1


I 1−N2


I 2



that is,
N1

I   N1


I 1 − N2


I 2

Therefore, one gets

I 2

,


I 1 −


I   N2

N1


I 2

where

I 2

,
is the load current viewed from the primary side. Similar to the case of the

ideal transformer, the relationship between the induced voltage in the primary and
secondary sides is given by

E1

E2
 N1

N2
 a

which implies that the relationship among the quantities E1,E2,

I 2

,
, and


I 2 can be

modelled by an ideal transformer. The equivalent circuit for a practical transformer is
shown in Figure 4.4.
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Figure 4.4 The equivalent circuit of a practical transformer
After the secondary is transformed to the primary side, the equivalent circuit becomes
one as shown in Figure 4.5.
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1Ê
mjXcR

cÎ  
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Figure 4.5 The equivalent circuit as viewed from the primary side
On the other hand, Figure 4.6 shows the equivalent circuit as viewed from the
secondary side.
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Figure 4.6 The equivalent circuit as viewed from the secondary side
In a well-designed transformer, R1,R2,X1, and X2 are kept as small as possible, and Rc
and Xm are kept as big as possible so that the transformer efficiency can be made as
high as possible. Since R1 and X1 are quite low, the voltage drop across them is also
low in comparison with the applied voltage. Without introducing any appreciable error,
we can assume that the voltage across the parallel branch is the same as the applied
voltage. This assumption allows us to move the parallel branch as shown in Figure
4.7.
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Figure 4.7 The approximate equivalent circuit as viewed from the

4.3 Voltage Regulation and Maximum Efficiency Criterion
The voltage regulation VR% is defined as

VR%  V2NL−V2FL
V2FL

 100
where V2NL and V2FL are effective values of no-load and full-load voltages at the
secondary terminals. For an ideal transformer, the voltage regulation is zero. The
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smaller the voltage regulation, the better the transformer.
The input power to an transformer is calculated by

Sin  V1

I 1
∗

Pin  V1I1 cos1  Re V1

I 1
∗

Qin  V1I1 sin1  Im V1

I 1
∗

where cos1 is the power factor of the transformer and 1 is the power angle of the
transformer (Note that the power angle is the difference between the voltage phase
angle and current phase angle).
The output power from an transformer is calculated by

Sin  V2

I 2
∗

Pin  V2I2 cos2  Re V2

I 2
∗

Qin  V2I2 sin2  Im V2

I 2
∗

where cos2 is the power factor of the load and 2 is the power angle of the load.
It follows from the approximate equivalent circuit shown in Figure 4.7 that the output
power can also be calculated by

Po  I2
′ V2

′ cos2

The copper loss is
Pcu  I2

′ 2R1  a2R2
Recall that the core loss is determined by Pm  Kef2B2  KhfBn. The flux in the
transformer is almost constant, so is B. Therefore, Pm is essentially constant. The
input power can also determined by

Pin  Po  Pcu  Pm  I2
′ V2

′ cos2  I2
′ 2R1  a2R2  Pm

The efficiency of the transformer is
  Po

Pin
 I2

′ V2
′ cos2

I2
′ V2

′ cos2I2
′ 2R1a2R2 Pm

which is a function of I2
′ . To get the load current I2

′ for the maximum efficiency, we
differentiate  with respect with I2

′ and set it to be zero, that is,
d
dIp


V2
′ cos2 I2

′ V2
′ cos2I2

′ 2R1a2R2 Pm −I2
′ V2

′ cos2V2
′ cos22I2

′ R1a2R2 

I2
′ V2

′ cos2I2
′ 2R1a2R2 Pm

2


V2
′ cos2 Pm−I2

′ 2R1a2R2 

I2
′ V2

′ cos2I2
′ 2R1a2R2 Pm

2  0

which implies that
Pm  I2

′ 2R1  a2R2  Pcu

The above equation indicates that the efficiency of a transformer is maximum when
the copper loss is equal to the core loss. The load current I2

′ for the maximum
efficiency is given by

I2
′  Pm

R1a2R2
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4.4 Determination of Transformer Parameters
Suppose a step-down transformer is tested in this section.
The Short-Circuit Test
Short-circuit the low-voltage side, increase the voltage on the high-voltage side until
the rated current is reached on the low-voltage side, and measure the voltage, current,
and power on the high-voltage side. The equivalent circuit for the short-circuit test is
shown in Figure 4.8.
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Figure 4.8 The equivalent circuit for the short-circuit test
Since the input voltage Vsc is very low, the excitation curcuit is small and can be
neglected and so the parallel braches can be removed to simplify calculations. Now
define Zeq  Req  jXeq  R1  a2R2  jX1  a2X2. Then, it follows from the equivalent
circuit that

Req  R1  a2R2  Psc

Isc
2

|Zeq |  Vsc
Isc

Xeq  X1  a2X2  |Zeq |2 − Req
2

For most transformers, resistances and reactances can be separated by
R1  a2R2  0.5Req

X1  a2X2  0.5Xeq

The Open-Circuit Test
Open-circuit the high-voltage side, apply the rated voltage to the low-voltage side, and
measure the voltage, current, and power on the low-voltage side. The equivalent
circuit for the open-circuit test is shown in Figure 4.9.
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ocV̂  

2
1 / ajX2

1 / aR  

2/ aRc

Figure 4.9 The equivalent circuit for the open-circuit test

6



Let Z  1
1

Rc/a2 
1

jXm/a2
. Then it follows from the equivalent circuit that

Rc/a2  Voc
2

Poc
 Rc  a2 Voc

2

Poc

|Z |  Voc
Ioc

Note that 1
Z

 1
Rc/a2  1

jXm/a2 , i.e. 1
Z

2
 1

Rc/a2

2
 1

Xm/a2

2
. As a result, we have

Xm/a2  1

1
Z

2
− 1

Rc/a2

2
 Xm  a2

1
Z

2
− 1

Rc/a2

2

Example 4.1 A 50kVA 2400:240V transformer is tested and the following data were
recorded: the short-circuit test readings with the low-voltage side short-circuited are
48V, 20.8A, and 617W; the open-circuit test readings with the high-voltage side
open-circuited are 240V, 5.41A, and 186W. Find the transformer parameters, the
efficiency, and the voltage regulation at full load and 0.8 power factor lagging.
Determine the load current for the maximum efficiency.
Solution: The transformation ratio is a  V1

V2
 2400

240  10. The approximate equivalent
circuit is shown in Figure 4.7. From the short-circuit test (see Figure 4.8),
Vsc  48V, Isc  20.8A,Psc  617W

Req  Psc

Isc
2  617

20.82  1. 4261

|Zeq |  Vsc
Isc

 48
20.8  2. 3077

Xeq  |Zeq |2 − Req
2  2. 30772 − 1. 42612  1. 8143

Therefore,
R1  0.5Req  0.5  1. 4261  0.71305
a2R2  0.5Req  0.5  1. 4261  0.71305
X1  0.5Xeq  0.5  1. 8143  0.90715
a2X2  0.5Xeq  0.5  1. 8143  0.90715

For the open-circuit test, the equivalent circuit is shown in Figure 4.9. From the
open-circuit test, Voc  240V, Ioc  5.41A, Poc  186W. Therefore,

Rc  a2 Voc
2

Poc
 102  2402

186  30968
|Z |  Voc

Ioc
 240

5.41  44. 362
Xm  a2

1
Z

2
− 1

Rc/a2

2
 102

1
44. 362

2
− 1

30968/102

2
 4482. 4

The full load current is
I2  S2

V2
 50000

240  208A
The load current referred to the primary side is

I2
′  1

a I2  1
10 208.33  20. 8A

The core loss is the same as the input power in the open-circuit test, that is,
Pm  168W

The copper loss is
Pcu  I2

′ 2R1  a2R2  20. 82  1. 4261  617W
The output power at full load is
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Po  V2I2 cos2  240  208  0.8  39936W
The input power at full load is

Pin  Po  Pcu  Pm  39936  617  168  40721W
The efficiency at full load is

  Po
Pin

 100  39936
40721  100  98.0%

The load voltage phasor is chosen as a reference, that is, V2  240∠0∘V and
V2
′
 aV2  2400∠0∘V. Then, the load current phasor is

I 2  I2∠cos−10.8  208∠ − 36.9∘A

The load current phasor referred to the primary side is

I 2
′
 1

a

I 2  1

10 208∠ − 36.9∘  20. 8∠ − 36.9∘  20. 80.8 − j0.6A
It follows from Figure 4.6 that

V1  V2
′


I 2
′
R1  a2R2  jX1  a2X2

 2400  20. 80.8 − j0.61. 4261  j1. 8143  2446. 3  j12. 392
 12. 3922  2446. 32∠ 180

 tan−1 12.392
2446.3  2446. 3∠ 0.29∘V

Now let us find the no load output voltage corresponding to V1  2446. 3∠ 0.29∘V by
using the approximate equivalent circuit. It is obvious that
V2
′  V1  2446. 3 and V2  V2

′ /a  244.63V. Therefore, the voltage regulation is
VR%  244.63−240

240  100  1. 93%
The load current for the maximum efficiency viewed from the primary side is

I2
′  Pm

R1a2R2
 168

1.4261  10. 854A

and the load current for the maximum efficiency is
I2  aI2

′  108.54A

4.5 Per-Unit Computations
quantities such as voltage, current, power, reactive power, volt-amperes, resistance,
reactance, and impedance can be translated to and from per-unit form as follows:

Quantity in per-unit  Actual quantity
Base Value of quantity

For a single phase system, the base values must obey the electric circuit laws, that is,
Pbase,Qbase,VAbase  VbaseIbase

Rbase,Xbase,Zbase 
Vbase
Ibase

1. Select a VA base and a base voltage at some point in the system.
2. Convert all quantities to per-unit.
3. Perform a standard electrical analysis with all quantities in per-unit.
4. Convert all quantities back to real units by multiplying their per-unit values by their
corresponding base values.
Note that the turns ratio of an ideal transformer in per unit is one if V1 and V2 are
chosen as the base voltages for the primary and secondary sides since
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apu 
V1,pu

V2,pu


V1
V1base

V2
V2base


V1
V1
V2
V2

 1

Example 4.2: A single-phase generator with an internal impedance Zg  23  j92m is
connected to a load via a 46kVA, 230/2300V, step-up transformer, a short
transmission line and a 46kVA, 2300/115V, step-down transformer. The impedance of
the transmission line is Ztl  2.07  j4.14. The parameters of step-up and step-down
transformers are:
Z1g  23  j69m, Zg  138  j69, Z2g  2.3  j6.9, Z1l  2.33  j6.9,
Zl  11.5  j9.2k, Z2l  5.75  j17.25m.
Determine (a) the generator voltage, (b) the generator current, and (c) the overall
efficiency of the system at full load and 0.866 pf lagging.
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LV̂lE1
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lZ 2

lZφ

lZ1tlZgZ 2

gE1
ˆgZφ  

gZ1  gZ  

gV̂
gÎ tlÎ lÎ

Figure 4.10 The circuit for Example 4.2
Solution:The equivalent circuit of the system incorporating ideal transformers is given
in Figure 4.10.
For the generator side, choose the base values Vbg  230V and Sbg  46000VA.
Then, we have

Ibg 
Sbg

Vbg
 46000

230  200A

Zbg 
Vbg

Ibg
 230

200  1. 15
The per-unit impedance of the generator is

Zg,pu 
Zg

Zbg
 0.023j0.092

1.15  0.02  j0.08
The per-unit parameters on the primary side of the step-up transformer are

Z1g,pu 
Z1g

Zbg
 0.023j0.069

1.15  0.02  j0.06

Zg,pu 
Zg

Zbg
 138j69

1.15  120  j60

For the transmission line side, choose the base values Vbtl  2300V and
Sbtl  46000VA. Then, we have

Ibtl 
Sbtl
Vbtl

 46000
2300  20A

Zbtl 
Vbtl
Ibtl

 2300
20  115

The per-unit impedance on the secondary side of the step-up transformer is
Z2g,pu 

Z2g

Zbtl
 2.3j6.9

115  0.02  j0.06
The per-unit impedance of the transmission line is

Ztl,pu 
Ztl
Zbtl

 2.07j4.14
115  0.018  j0.036

The per-unit parameters on the primary side of the step-down transformer are
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Z1l,pu 
Z1l
Zbtl

 2.3j6.9
115  0.02  j0.06

Zl,pu 
Zl

Zbtl
 11500j9200

115  100  j80
For the load side, choose the base values Vbl  115V and Sbl  46000VA. Then, we
have

Ibl 
Sbl
Vbl

 46000
115  400A

Zbl 
Vbl
Ibl

 115
400  0.2875

The per-unit impedance on the secondary side of the step-down transformer is
Z2l,pu 

Z2l
Zbl

 0.00575j0.01725
0.2875  0.02  j0.06

The per-unit load voltage and per-unit load current are
Vl,pu 

Vl
Vbl

 115
115  1

Il,pu 
Il
Ibl


Sl
Vl

400 
46000
115
400  1

The load voltage and current phasors are
Vl,pu  1∠0∘

I l,pu  1∠ − 30∘

ZL
puLV ,

ˆ
pulE ,1

ˆ

pulZ ,2  

pulZ ,φ

pulZ ,1putlZ ,pugZ ,2

pugE ,1
ˆ  

pugZ ,φ  

pugZ ,  

pugV ,
ˆ  

pugI ,
ˆ

putlI ,
ˆ pulI ,

ˆ

pugZ ,1  

Figure 4.11 The equivalent circuit in per-unit for Example 4.2
The equivalent circuit of the system in per unit is shown in Figure 4.11. It follows from
this equivalent circuit that

E1l,pu 

I l,puZ2l,pu  Vl,pu  1∠ − 30∘0.02  j0.06  1∠0∘

 cos 
6 − j sin 

6 0.02  j0.06  1  1.047  j0.042

I tl,pu 


I l,pu 

E1l,pu

Zl,pu
 1∠ − 30∘  1.047j0.042

100j80

 cos 
6 − j sin 

6  1.047j0.042100−j80
1002802  0.872 − j0.505

E1g,pu 

I tl,puZ2g,pu  Ztl,pu  Z1l,pu  E1l,pu

 0.872 − j0.5050.02  j0.06  0.018  j0.036  0.02  j0.06  1.047  j0.042
 1. 176  j0.149

I g,pu 


I tl,pu 

E1g,pu

Zg,pu
 0.872 − j0.505  1.176j0.149

120j60

 0.872 − j0.505  1.176j0.149120−j60
1202602

 0.880 − j0.508
Vg,pu 


I g,puZg,pu  Z1g,pu  E1g,pu
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 0.880 − j0.5080.02  j0.08  0.02  j0.06  1. 176  j0.149
 1. 282  j0.252

(a) Therefore, the generator voltage is
Vg  VbgVg,pu  2301. 282  j0.252
 294. 86  j57. 96  294. 862  57. 962∠ tan−1 57.96

294.86
180


 300. 5∠11. 1∘V
(b) The generator current is


I g  Ibg


I g,pu  2000.880 − j0.508

 176.0 − j101. 6  176.02  101. 62∠ tan−1 −101.6
176.0

180


 203. 2∠ − 30∘A
(c) On a per-unit basis, the rated power output at a 0.866 pf lagging is

Po,pu  Vl,pu

I l,pu cos  0.866

The per-unit input power from the generator is
Pin,pu  Re Vg,pu


I g,pu
∗

 Re1. 282  j0.2520.880  j0.508  1. 0002

Thus, the efficiency is
  Po,pu

Pin,pu
 100  0.866

1.0002  100  86. 6%

4.6 Autotransformers
An ideal two-winding transformer can be connected as an ideal autotransformer.
There are four possible ways to connect a two-winding transformer as an
autotransformer, as shown in Figures 4.12-4.15.

 

aV1̂  

1Ê

2Ê
aV2

ˆ

aE1
ˆ  

aE2
ˆ

1̂I

2Î

aI 2
ˆ

aI1̂

2N

1N

Figure 4.12 A step-down authotransformer
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aV1̂  

2Ê

1Ê
aV2

ˆ

aE1
ˆ  

aE2
ˆ

2Î

1̂I

aI 2
ˆ

aI1̂

2N

1N

Figure 4.13 A step-down authotransformer
 

aV1̂  

2Ê

1Ê

aV2̂

aE1
ˆ  

aE2
ˆ

2Î

1̂I

aI 2
ˆ

aI1̂ 2N

1N

Figure 4.14 A step-up autotransformer
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aV1̂  2Ê

1Ê

aV2̂

aE1
ˆ  

aE2
ˆ

2Î

1̂I

aI 2
ˆ

aI1̂

2N

1N

Figure 4.15 A step-up autotransformer
The following examples show how to calculate the primary winding voltage and
current, V1a and


I 1a, the secondary winding voltage and current, V2a and


I 2a, the ratio

of transformation aT, and the apparent power input and output,

Sina and


Soa.

Example 4.3: A 24kVA 2400/240V two-winding transformer is to be connected as an
autotransformer. For each possible combination, determine the primary winding
voltage and current, V1a and I1a, the secondary winding voltage and current, V2a and
I2a, the ratio of transformation aT, and the apparent power input and output, Sina and
Soa under ideal conditions.
Solution: For the given information for the two-winding transformer, we get

E1  V1  2400V,E2  V2  240V,
a  V1

V2
 10,So  24000VA,

I2  So
V2

 100A, I1  I2
a  10A

For the autotransformer shown in Figure 4.12,
V1a  E1a  E1  E2  2640V,V2a  E2a  E2  240V,
aT  V1a

V2a
 11, I1a  I1  10A, I2a  I1  I2  110A,

Sina  V1aI1a  2640  10  26400VA,Soa  V2aI2a  240  110  26400VA
The nominal rating of the autotransformer in Figure 4.12 is 26.4kVA, 2640/240V.
For the autotransformer shown in Figure 4.13,
V1a  E1a  E1  E2  2640V,V2a  E2a  E1  2400V,
aT  V1a

V2a
 2640

2400  1.1, I1a  I2  100A, I2a  I1  I2  110A,
Sina  V1aI1a  2400  100  264000VA,Soa  V2aI2a  2400  110  264000VA
The nominal rating of the autotransformer in Figure 4.13 is 264kVA, 2640/2400V.
For the autotransformer shown in Figure 4.14,
V1a  E1a  E1  2400V,V2a  E2a  E1  E2  2640V,
aT  V1a

V2a
 2400

2640  0.91, I1a  I1  I2  110A, I2a  I2  100A,
Sina  V1aI1a  2400  110  264000VA,Soa  V2aI2a  2640  100  264000VA
The nominal rating of the autotransformer in Figure 4.14 is 264kVA, 2400/2640V.
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For the autotransformer shown in Figure 4.15,
V1a  E1a  E2  240V,V2a  E2a  E1  E2  2640V,
aT  V1a

V2a
 240

2640  0.091, I1a  I1  I2  110A, I2a  I1  10A,
Sina  V1aI1a  240  110  26400VA,Soa  V2aI2a  2640  10  26400VA
The nominal rating of the autotransformer in Figure 4.15 is 26.4kVA, 240/2640V.
Note that the nominal rating of the autotransformer in Figure 4.13 or 4.14 is 10 times
the nominal rating of the two-winding transformer.
Example 4.4: A 720VA 360/120V two-winding transformer has the following
parameters: R1  18.9, X1  21.6, R2  2.1, X2  2.4, Rc1  8.64k,
Xm1  6.84k. The transformer is connected as a 120/480V step-up autotransformer.
If the autotransformer delivers the full load at 0.707 pf leading, determine its efficiency
and voltage regulation.

aV1̂  

2Ê

1Ê

aV2̂  
LaZ

2Î

2cR  

aI 2
ˆ

aI 2
ˆ′

2N

1N

1R

2R

1jX

2jX2mjX

aI1̂  

aI φ̂

caÎ  
maÎ

Figure 4.16 The approximate equivalent circuit of a
Solution: The turns ration of the two-winding transformer is a  360

120  3 and the turns
ratio of the autotransformer is aT  120

480  0.25. The equivalent core-loss resistance
and the magnetizing reactance on the secondary side of the two-winding transformer
is
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Rc2 
Rc1

a2  8640
32  960, Xm2  Xm1

a2  6840
32  760

The approximate equivalent circuit of the autotransformer is shown in Figure 4.16.
Assume that V2a  480∠0∘V. The full load current is

I2a  I1  Sin
V1

 720
360  2A, so


I 2a  2∠45∘A  2cos 45 

180  j2sin 45 
180

and

I 2a

,



I 2a
aT  2

0.25  8∠45∘A  8cos 45 
180  j8sin 45 

180 .
Hence,


I 2 


I 2a

,
−

I 2a  8∠45∘ − 2∠45∘

 8cos 45 
180  j8sin 45 

180 − 2cos 45 
180 − j2sin 45 

180
 6cos 45 

180  j6sin 45 
180

Note that E1  aE2  3E2. Then, it follows from KVL that
E1 −


I 2aR1  jX1 − V2a 


I 2R2  jX2  E2  0

or
E2  1

4

I 2aR1  jX1  V2a −


I 2R2  jX2

 1
4 2cos 45 

180  j2sin 45 
180 18.9  j21.6

 480
4 − 1

4 6cos 45 
180  j6sin 45 

180 2.1  j2.4
 119. 36  j9. 5459V

Thus,
V1a  E2 


I 2R2  jX2

 119. 36  j9. 5459  6cos 45 
180  j6sin 45 

180 2.1  j2.4
 118. 09  j28. 638  118. 092  28. 6382∠ tan−1 28.638

118.09
180
  121. 51∠13. 6∘V

On the other hand,

I 1a 


I a 


I 2a

,
 V1a

Rc2
 V1a

jXm2


I 2a

,
 V1a

1
Rc2

 1
jXm2



I 2a

,

 118. 09  j28. 638 1
960  1

j760  8cos 45 
180  j8sin 45 

180

 118. 09  j28. 638 1
960 − j 1

760  8cos 45 
180  j8sin 45 

180
 5. 8176  j5. 5313

Therefore,
Po  Re V2a


I 2a
∗

 Re 480 2cos 45 
180 − j2sin 45 

180  678. 82W

Pin  Re V1a

I 1a
∗

 Re118. 09  j28. 6385. 8176 − j5. 5313  845. 41W

  Po
Pin

 100  678.82
845.41  100  80. 3%

If we remove the load, the no-load voltage at the secondary of the autotransformer is
V2aNL  V1a

aT  121.51
0.25  486. 04V

We now can compute the voltage regulation as
VR%  V2aNL−V2aFL

V2aFL
 100  486.04−480

480  100  1. 24%

4.7 Three-Phase Transformers
The three windings on either side of a three-phase transformer can be connected
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either in Y or in . Therefore, a three-phase transformer can be connected in four
possible ways: Y/Y, /, /Y, Y/, as shown in Figures 17-20.

1A  2A  

1B 2B  1C  2C

1a  2a

1b 2b
1c  2c

1n  2n  

Figure 4.17 Y-Y connection

 
1a  

1A

1B  
1b

1C  

1c  

2a

2A  

2B
2b  

2C

2c

Figure 4.18  −  connection

1a  

1A  

1B  
1b

1C  

1c  

2A

2B  2C

2a

2b  
2c

2n

Figure 4.19  − Y connection
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2a

2A  

2B
2b  

1n  

 

1A  

1B1C  

1a  

1b
1c  

2C

2c

Figure 4.20 Y-connection
For simplicity, we assume that the three-phase transformer delivers a balanced load.
Under steady-state conditions, a three-phase transformer can be analyzed by (a)
transforming a -connected winding to a Y-connected winding using -to-Y
transformation, (b) drawing a per-phase equivalent circuit, and (c) computing
quantities for the per-phase equivalent circuit.
-to-Y transformation: If Z is the impedance in a -connected winding, the
equivalent impedance ZY in a Y-connected winding is

ZY  1
3 Z

and
Van 

Vab

3
∠ − 30∘


I A′  3


I A∠ − 30∘

 

a  

A  

B  
b

n

 

A′

B′  C ′

a

b  c

C  

c  

Figure 4.21  − Y transformation
Example 4.5: A three-phase transformer is assembled by connecting three 720VA
360/120V single-phase transformers. The constants for each transformer are
RH  18.9, XH  21.6, RL  2.1, XL  2.4, RcH  8.64k, XmH  6.84k. For
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each of the four configurations, determine the nominal voltage and power ratings of
the three-phase transformer. Draw the per-phase equivalent circuit for each
configuration.

1
ˆ

AE
2

ˆ
AE

1mAjX
1cAR  

1
ˆ
cAI  

1
ˆ
mAI

1
ˆ

AIφ
2

ˆ
AI ′

2AjX
2AR  1AjX  

1AR  
1

ˆ
AI  

a

2
ˆ

AI

11
ˆ

naV  
22

ˆ
naV     2Z  

Solution: The power rating of the three-phase transformer for each configuration is
S3  3  720  2160VA.
(a) Y-Y connection: The nominal values of the line voltages on the primary and the
secondary sides are

V1L  3 Va1n1  3  360  623. 54V
V2L  3 Va2n2  3  120  207. 85V

Thus, the nominal ratings of the three-phase transformer are 2.16kVA 624/208V Y/Y
connection. The per-phase equivalent circuit is shown in Figure 4.22 with the following
parameters:

a  360
120  3,

RA1  RH  18.9, XA1  XH  21.6,
RA2  RL  2.1, XA2  XL  2.4,
RcA1  RcH  8.64k, XmA1  XmH  6.84k

(b) - connection: The nominal values of the line voltages on the primary and the
secondary sides are

V1L  Va1b1  360V
V2L  Va2b2  120V

Thus, the nominal ratings of the three-phase transformer are 2.16kVA 360/120V /
connection. The per-phase equivalent circuit is shown in Figure 4.22 with the following
parameters:

a 
360

3
120

3

 3,

RA1 
RH
3  18.9

3  6. 3, XA1 
XH
3  21.6

3  7.2,
RA2 

RL
3  2.1

3  0.7, XA2 
XL
3  2.4

3  0.8,
RcA1 

RcH
3  8.64

3  2.88k, XmA1 
XmH

3  6.84
3  2.28k

(c) -Y connection: The nominal values of the line voltages on the primary and the
secondary sides are

V1L  Va1b1  360V
V2L  3 Va2n2  3  120  207.85V

Thus, the nominal ratings of the three-phase transformer are 2.16kVA 360/208V /Y
connection. The per-phase equivalent circuit is shown in Figure 4.22 with the following
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parameters:

a 
360

3

120  1. 732 ,
RA1 

RH
3  18.9

3  6. 3, XA1 
XH
3  21.6

3  7.2,
RA2  RL  2.1, XA2  XL  2.4,
RcA1 

RcH
3  8.64

3  2.88k, XmA1 
XmH

3  6.84
3  2.28k,

EA1  aEA2∠ − 30∘,

I A2

,
 1

a

I A2∠ − 30∘

(d) Y- connection: The nominal values of the line voltages on the primary and the
secondary sides are

V1L  3 Va1n1  3  360  623. 54V
V2L  Va2b2  120V

Thus, the nominal ratings of the three-phase transformer are 2.16kVA 624/120V Y/
connection. The per-phase equivalent circuit is shown in Figure 4.22 with the following
parameters:

a  360
120

3

 5. 196 ,

RA1  RH  18.9, XA1  XH  21.6,
RA2 

RL
3  2.1

3  0.7, XA2 
XL
3  2.4

3  0.8,
RcA1  RcH  8.64k, XmA1  XmH  6.84k,
EA1  aEA2∠30∘,


I A2

,
 1

a

I A2∠30∘

Example 4.6: Three single-phase transformers, each rated at 12kVA 120/240V 60Hz
are connected to form a three-phase step-up Y/ connection. The parameters of each
transformer are RH  133.5m, XH  201m, RL  39.5m, XL  61.5m, RcL  240,
XmL  290. What are the nominal voltage, current, and power ratings of the
three-phase transformer. When it delivers the rated load at rated voltage and 0.8 pf
lagging, determine the line voltages, the line currents, and the efficiency of the
three-phase transformer.
Solution: The nominal values of the three-phase transformer are

S3  3S1  36kVA
V1  Va1n1  120V
V1L  3 Va1n1  3  120  208V
V2  Va2b2  240V
V2L  Va2b2  240V

For the equivalent Y/Y connection, the nominal values of the three-phase transformer
are

V1  Va1n1  120V
V1L  3 Va1n1  3  120  208V
V2 

Va2b2

3
 240

3
 138. 56V

V2L  Va2b2  240V
Thus, the nominal ratings of the three-phase transformer are 36kVA 208/240V Y/
connection. The per-phase equivalent circuit is shown in Figure 4.22 with the following
parameters:
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a  120
138.56  0.866 ,

RA1  RL  39.5m, XA1  XL  61.5m,
RA2 

RH
3  133.5

3  44. 5m, XA2 
XH
3  201

3  67m,
RcA1  RcL  240, XmA1  XmL  290,

EA1  aEA2∠30∘,

I A2

,



I A2
a ∠30∘

Assuming the rated load voltage on a per-phase basis for the equivalent Y/Y
connection as the reference, then

Va2n2  138.56∠0∘V
For a 0.8 lagging power factor, the load current is


I A2 

S1

V2
∠ − cos−10.8  12000

138.56 ∠ − cos−10.8  86. 6∠ − 36.87∘A
The per-phase load current in the primary winding is


I A2

,



I A2
a ∠30∘  86.6

0.866 ∠30∘ − 36.87∘  100∠ − 6.87∘A
The per-phase voltage induced in the equivalent Y-connected secondary winding is

EA2  Va2n2 

I A2RA2  jXA2   138.56  86. 6∠ − 36.87∘0.0445  j0.067

 138.56  86. 60.8 − j0.60.0445  j0.067
 145. 12  j2. 3295  145. 122  2. 32952∠ tan−1 2.3295

145.12
180
  145. 147∠0.92∘V

The induced emf in the Y-connected primary winding is
EA1  aEA2∠30∘  0.866∠30∘145. 147∠0.92∘  0.866  145.

147∠0.92∘  30∘  125. 7∠30.92∘V
The excitation current is


I A1 

EA1
1

1
RcA1

 1
jXmA1

 EA1
1

RcA1
 1

jXmA1
 125. 7∠30.92∘ 1

240  1
j290

 125. 7cos 30.92 
180  j125. 7sin 30.92 

180
1

240 − j 1
290  0.67204 − j0.10272A

Thus, the primary current is

I A1 


I A1 


I A2

,
 0.67204 − j0.10272  100∠ − 6.87∘

 0.67204 − j0.10272  100 cos −6.87 
180  j sin −6.87 

180  99. 954 − j12.
064A
and the primary phase voltage is

Va1n1  EA1 

I A1RA1  jXA1   125.

7∠30.92∘  99. 954 − j12. 0640.0395  j0.0615

 125. 7cos 30.92 
180  j125. 7sin 30.92 

180  99. 954 − j12. 0640.0395  j0.0615
 112. 52  j70. 26  112. 522  70. 262∠ tan−1 70.26

112.52
180


 132. 65∠31. 982∘V
The line voltage on the primary side is

V1L  3 Va1n1∠30∘  132. 65 3∠61. 982∘  229. 76∠61. 982∘V
The total input power is
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Pin  3Re Va1n1


I A1

∗
 3Re112. 52  j70. 2699. 954  j12. 064

 3Re10399  j8380. 2  3  10399  31197W
The total output power is

Po  3Re Va2n2


I A2

∗
 3Re138.56∠0∘86. 6∠ − 36.87∘

 3Re138.56  86.60.8  j0.6
 3Re9599. 4  j7199. 6  3  9599. 4  28798W

Hence, the efficiency of the three-phase transformer is
  Po

Pin
 100  28798

31197  100  92. 3%

Chapter 5 Synchronous Machines
The basic components of a synchronous machine are the stator and rotor. The field
winding is placed on the rotor and so called the rotor winding. A DC source is
connected to the field winding through slip rings and generates a magnetic flux in the
machine. Three-phase armature windings are mounted on the stator spatially
displaced by 120 degree electrical from one another and so referred to as the stator
windings. A three-phase AC source is applied to the armature winding in a
synchronous motor to drive a mechanical load and a three-phase AC power is output
from the armature winding in a synchronous generator when it is driven by a prime
mover.
Two type of rotors are used in the design of synchronous machines, the cylindrical
rotor and a salient-pole rotor.
Balanced three-phase currents generate a rotating magnetic field with a constant
magnitude and revolving around the periphery of the rotor at a synchronous speed
defined by

s 
4f
P

where f is the frequency of the AC currents and P is the number of poles in the
machine.
The induced voltage of a synchronous machine is directly proportional to the product
of the flux  in the machine and the speed s of the machine, that is, Ea  ks.

5.1 Synchronous Generators
A generator is driven by a mechanical source, a prime mover, to turn at the
synchronous speed. When a DC source is applied to the field winding, three-phase AC
voltages are induced in the armature windings.

5.1.1 Synchronous Generators with a Cylindrical Rotor
Figure 5.1 shows an equivalent circuit for a synchronous generator with a cylindrical
rotor, where Rf, Lf, Vf, and If are the field resistance, inductance, voltage, and current,
Xs is the synchronous reactance, Ra, Va, and


I a are the armature resistance, voltage,

and current, Ea is the generated voltage (induced voltage). It follows from KVL that
Ea  Va 


I aRa  j


I aXs
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aÎ

aV̂  aÊ

Figure 5.1 The per-phase equivalent circuit of a
Figure 5.2 shows the phasor diagram for a synchronous generator with a lagging load.
 is the power angle and  is the torque angle. The torque angle is negative for the
synchronous generator.

aÎ  

aV̂

aa RÎ

sa XIj ˆ

aÊ

δ
θ  

Figure 5.2 The phasor diagram for a
1. The resistance Test: This test is conducted to measure the armature winding
resistance of a synchronous generator by measuring the resistance from line to line,
RL, when it is at rest and the field winding is open. If the generator is Y-connected, the
per-phase resistance is Ra  0.5RL. On the other hand, for a -connected generator,
Ra  1.5RL.
2. The Open-Circuit Test (No-Load Test): This test is performed by driving the
generator at its rated speed while the armature winding is left open. The open-circuit
voltage between any two pair of terminals of the armature windings is recorded when
the field current is varied from zero to its rated value. The graph of the per-phase
open-circuit voltage versus the field current is referred to as the open-circuit
characteristic of a generator.
3. The Short-Circuit Test: This tested is carried out by driving the generator at its
rated speed when the terminals of the armature winding are shorted. The line current
of the armature winding is recorded when the field current is gradually increased. The
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graph of the per-phase short-circuit current versus the field current is called the
short-circuit characteristic of a generator.
4. Calculation of the Synchronous Reactance: Let Ifr be the field current which
gives the rated per-phase voltage Vaoc from the open-circuit test and Iasc be the
phase current corresponding to the field current Ifr from the short-circuit test. Then, the
synchronous reactance is calculated by

|Zs |  Vaoc
Iasc

(Synchronous impedance Zs  Ra  jXs)

Xs  |Zs |2 − Ra
2

O C C  

S C C  

s co c IV ,

a o cV  

a s cI  
fI  

f rI  

Figure 5.3 OCC and SCC of a synchronous machine
5. The Developed Torque and Efficiency:
The output power of a synchronous generator is

Po  3VaIa cos
The copper loss in the armature winding is

Pcu  3Ia
2Ra

The developed power is
Pd  Po  Pcu  3VaIa cos  3Ia

2Ra

If Ra  0, then
Pd  3VaEa sin

Xs

The developed torque is
d 

Pd
s

The input power to the field winding is
Pf  VfIf

If Pr is the rotational loss and Pstray is the stray loss, then the input power
Pin Pmech  Pf is

Pin  Po  Pcu  Pr  Pstray  Pf  3VaIa cos  3Ia
2Ra  Pr  Pstray  Pf

The core loss Pc  Pr  Pstray  Pf does not change much with the load change and
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can be considered as constant. The efficiency of the generator
  Po

Pin
 3VaIa cos

3VaIa cos3Ia
2RaPc

reaches its maximum when
3Ia

2Ra  Pc

As a result, the generator reaches its maximum efficiency when the load current is
Ia  Pc

3Ra

6. The Voltage Regulation: The voltage regulation of a synchronous generator is
defined as the ratio of the change in the terminal voltage from no load to full load, that
is,

VR%  VaNL−VaFL
VaFL

where VaNL and VaFL are the no-load voltage and the full-load voltage of the
synchronous generator.
Example 5.1: A 500kVA, 2300V, three-phase, Y-connected, synchronous generator is
operated at its rated speed to obtain its rated no-load voltage. When a short-circuit is
established, the phase current is 150A. The average resistance of each phase is
0.5. The core loss is assumed to be 20kW. Determined the synchronous reactance
per phase. Calculate the efficiency and voltage regulation when the generator delivers
the rated load at its rated voltage and 0.8 pf lagging.
Solution:
The open-circuit phase voltage is Vaoc  2300/ 3  1327. 9V
The short-circuit phase current is Iasc  150A
Therefore the synchronous impedance is |Zs |  Vaoc

Iasc
 1327.9

150  8. 85

Thus the synchronous reactance is Xs  |Zs |2 − Ra
2  8. 852 − 0.52  8. 84

The rated phase voltage is Va  2300
3

 1327. 9V and it is assumed that Va  1327.
9∠0∘V
The rated load current is Ia  500000

31327.9  125. 51A and

I a  125. 51∠ − 36.87∘A

It follows from the per-phase equivalent circuit that
Ea  Va 


I aZs  1327. 9∠0∘  125. 51∠ − 36.87∘0.5  j8. 84

 1327. 9  125. 510.8 − j0.60.5  j8. 84  2043. 8  j849. 95
 2043. 82  849. 952∠ tan−1 849.95

2043.8
180
  2213. 5∠22. 6∘V

Thus, the no-load phase voltage is VaNL  Ea  2213. 5V and the full-load phase
voltage is VaFL  Va  1327. 9V, which implies that

VR%  2213.5−1327.9
1327.9  100  66. 7%

The output power of the synchronous generator is
Po  3VaIa cos  3  1327. 9  125. 51  0.8  400000W

The copper loss in the armature winding is
Pcu  3Ia

2Ra  3  125. 512  0.5  23629W
The input power is

Pin  Po  Pcu  Pc  400000  23629  20000  443630W

24



Thus, the efficiency of the generator is
  Po

Pin
 100  400000

443630  100  90.2%

5.1.2 Synchronous Generators with a Salient-Pole Rotor
Unlike a cylindrical rotor synchronous generator, a salient-pole synchronous generator
has a large air-gap in the region between the poles than in the region just above the
poles, as is evidenced from Figure 5.3. Therefore, the reluctances of the two regions
in a salient-pole generator differ significantly.
In order to account for this difference, the synchronous reactance is split into two
reactances. The component of the synchronous reactance along the pole-axis (the
d-axis) is called the direct-axis synchronous reactance Xd and the other component
along the axis between the poles (the q-axis) is referred to as the quadrature-axis
synchronous reactance Xq.

a 

a’

b 
c 

b’ 

c’

d-axis

q-axis

Figure 5.4 A salient-pole synchronous
The armature current


I a is also resolved into two components: the direct-axis

component

I d and quadrature-axis component


I q. Then,


I a 


I d 


I q. The direct-axis

component

I d produces the field along the d-axis and lags Ea by 90∘ and the

quadrature-axis component

I q produces the field along the q-axis and is in phase with

Ea.
Let Ea be the per-phase generated voltage under no-load and Ed and Eq be the
induced emfs in the armature winding by the currents


I d and


I q, respectively. Then Ed

and Eq can be expressed in terms of Xd and Xq as
Ed  −j


I dXd and Eq  −j


I qXq

The per-phase terminal voltage of the generator is
Va  Ea  Ed  Eq −


I aRa  Ea − j


I dXd − j


I qXq −


I aRa
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 Ea − j

I dXd − j


I a −


I d Xq −


I aRa  Ea − j


I dXd − Xq − j


I aXq −


I aRa

 Ea
,
− j

I aXq −


I aRa

where Ea
,
 Ea − j


I dXd − Xq, as shown in Figure 5.4.

qÊ  

aR  

aÎ  

aV̂aÊ  

qjX
aR  

aÎ  

aV̂  aE′ˆ
dÊ  

Figure 5.5 Equivalent circuits of a salient-pole synchronous
The phasor diagrams for a lagging load and a leading load are shown in Figure 5.5.
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Figure 5.6 Phasor diagram of a salient-pole synchronous
The output power is

Po  3Re Va

I a
∗

 3VaIa cos

The copper loss in the armature winding is
Pcu  3Ia

2Ra

The developed power is
Pd  Po  Pcu  3VaIa cos  3Ia

2Ra

If Ra  0, then
Pd 

3VaEa sin| |
Xd

 3Xd−Xq 
2XdXq

Va
2 sin|2|

and the developed torque is
d 

3VaEa sin| |
Xds

 3Xd−Xq 
2XdXqs

Va
2 sin|2|

The input power to the field winding is
Pf  VfIf

If Pr is the rotational loss and Pstray is the stray loss, then the input power
Pin Pmech  Pf is

Pin  Po  Pcu  Pr  Pstray  Pf  3VaIa cos  3Ia
2Ra  Pr  Pstray  Pf  3VaIa cos  3Ia

2Ra

where Pc  Pr  Pstray  Pf is the core loss. The efficiency of the generator
  Po

Pin
 3VaIa cos

3VaIa cos3Ia
2RaPc

Example 5.2: A 70MVA 13.8kV 60Hz two-pole Y-connected three-phase salient-pole
synchronous generator has Ra  0, Xd  1.83, and Xq  1.21. It delivers the rated
load at 0.8 pf lagging. Determine , Ea, VR%, Pd, and d.
Solution: The phase terminal voltage is

Va  13800
3
∠0∘  7967. 4∠0∘V

The phase load current is

I a  70106

3 13800
∠ − 36.87∘  2928. 6∠ − 36.87∘A
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It follows from the equivalent circuit that
Ea

,
 Va  j


I aXq 


I aRa  7967. 4∠0∘  2928. 6∠ − 36.87∘j1.21

 7967. 4  2928. 60.8 − j0.6j1.21  10094  j2834. 9
 100942  2834. 92∠ tan−1 2834.9

10094
180
  10485∠15. 7∘V

The torque angle is 15. 7∘. The d- and q-axis currents are

I d  Ia sin||  ∠−90∘  
 2928. 6sin 36.87  15.7 

180 ∠−90∘  15.7∘  2323.6∠ − 74.3∘A

I q  Ia cos||  ∠  2928. 6cos 36.87  15.7 

180 ∠15.7∘  1780∠15.7∘A
The generated voltage is

Ea  Ea
,
 j

I dXd − Xq  10094  j2834. 9  2323.6∠ − 74.3∘j1.83 − 1.21

 10094  j2834. 9  2323.6 cos −74.3 
180  j sin −74.3 

180 j1.83 − 1.21

 11481  j3224. 7  114812  3224. 72∠ tan−1 3224.7
11481

180
  11925∠15. 7∘V

or is given by
Ea  Va  j


I dXd  j


I qXq 


I aRa

 7967. 4∠0∘  2323. 6∠ − 74.3∘j1.83  1780∠15.7∘j1.21  0
 7967. 4  2323. 6 cos −74.3 

180  j sin −74.3 
180 j1.83

 1780 cos 15.7 
180  j sin 15.7 

180 j1.21
 11478  j3224. 1  114782  3224. 12∠ tan−1 3224.1

11478
180
  11922∠15. 7∘V

The developed power is
Pd  Po  Pcu  Po  3VaIa cos  3  7967. 4  2928. 6  0.8  5.6  107W

The synchronous speed is
s 

4f
P  460

2  376. 99rad/s
The developed torque is

d 
Pd
s  5.6107

376.99  1. 4855  105N  m
The voltage regulation is

VR%  11925−7967.4
7967.4  100  49. 7%

5.2 Synchronous Motors
A synchronous motor is powered by a electrical source to drive a load at the
synchronous speed. When a DC source is applied to the field winding and three-phase
AC voltages are connected to the armature windings, the motor will turns its load at
the synchronous speed.

5.2.1 Synchronous Motors with a Cylindrical Rotor
The equivalent circuit for a cylindrical-rotor synchronous motor is shown in Figure 5.7,
which is the same as the cylindrical-rotor synchronous generator with the reversed
armature current direction. It follows from Kirchhoff’s voltage law that

Va  Ea 

I aRa  j


I aXs

Figure 5.8 shows the phasor diagrams for a synchronous motor with a lagging load. 
is the power angle and  is the torque angle. The torque angle is negative for the
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synchronous motor.
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Figure 5.7 The per-phase equivalent circiut of a
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Figure 5.8 The phasor diagram
The input power of a synchronous motor is

Pin  3VaIa cos  VfIf

The copper loss is
Pcu  3Ia

2Ra  VfIf

The developed power is
Pd  Pin − Pcu  3VaIa cos − 3Ia

2Ra

The developed torque is
d 

Pd
s

If Ra  0, then
Pd  3VaEa sin

Xs

If Pr is the rotational loss and Pstray is the stray loss, then the output power Po os
is

Po  Pd − Pr − Pstray

The efficiency of the motor is
  Po

Pin

Example 5.3: A 220V 60Hz 3-phase 2-pole Y-connected synchronous motor has a
synchronous impedance of 0.25j2.5/phase. The motor delivers the rated load of
80A at 0.707 pf leading. Determine (a) the generated voltage, (b) the torque angle, (c)
the power developed by the motor, and (d) the developed torque.
Solution: The phase voltage is Va  220

3
 127V. Assume Va  127∠0∘V. The phase
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armature current is

I a  80∠45∘A. It follows from the per-phase equivalent circuit that

Ea  Va −

I aRa − j


I aXs  127∠0∘ − 80∠45∘0.25  j2.5

 127 − 800.701  j0.7070.25  j2.5  254. 38 − j154. 34
 254. 382  154. 342∠ tan−1 −154.34

254.38
180
  297. 54∠ − 31. 2∘V

The torque angle is −31.2∘.

Pd  Pin − Pcu  3VaIa cos  Pf − 3Ia
2Ra  Pf  3  127  80  0.707 − 802  0.25 

16749W
The developed torque is

d 
Pd
s  16749

460
2

 44. 428N  m

5.2.2 Synchronous Motors with a Salient-Pole Rotor
Similar to a salient-pole synchronous generator, the per-phase equivalent circiut for a
salient-pole synchronous motor is required to analyse the motor performance, which is
shown in Figure 5.9.
The per-phase terminal voltage of the motor is

Va  Ea − Ed − Eq 

I aRa  Ea  j


I dXd  j


I qXq 


I aRa

 Ea  j

I dXd  j


I a −


I d Xq 


I aRa  Ea  j


I dXd − Xq  j


I aXq 


I aRa

 Ea
,
 j

I aXq 


I aRa

where Ea
,
 Ea  j


I dXd − Xq, as shown in Figure 5.9. The phasor diagrams for a

leading load and a lagging load are shown in Figure 5.10.
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Figure 5.9 The equivalent circiut of a salient-pole motor
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dd XIj ˆ

( )qdd XXIj −ˆ
qq XIj ˆ  aÊ
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Figure 5.10 The Phasor diagram
Then the input power is

Pin  3Re Va

I a
∗

 3VaIa cos  VfIf

The copper loss is
Pcu  3Ia

2Ra  VfIf

The developed power is
Pd  Pin − Pcu  3VaIa cos − 3Ia

2Ra

If Ra  0, then
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Pd 
3VaEa sin| |

Xd
 3Xd−Xq 

2XdXq
Va

2 sin|2|
The developed torque is

d 
Pd
s

If Pr is the rotational loss and Pstray is the stray loss, then the output power Po os
is

Po  Pd − Pr − Pstray

The efficiency of the motor
  Po

Pin

Example 5.4: A 208V 60Hz three-phase Y-connected salient-pole synchronous motor
operates at full load and draws a current of 40A at 0.8 pf lagging. The d- and q-axis
reactances are 2.7/phase and 1.7/phase, respectively. The armature-winding
resistance is negligible, and the rotational loss is 5% of the power developed by the
motor. Determine (a) the developed voltage, (b) the developed power, and (c) the
efficiency.
Solution: The per-phase load voltage and current are Va  208

3
∠0∘  120∠0∘V and


I a  40∠ − cos−10.8  40∠ − 36.87∘A.
It follows from the per-phase equivalent circuit that

Ea
,
 Va − j


I aXq −


I aRa 

120∠0∘ − 40∠ − 36.87∘j1.7  120 − 400.8 − j0.6j1.7
 79. 2 − j54. 4  79. 22  54. 42∠ tan−1 −54.4

79.2
180
  96. 083∠ − 34. 48∘V

which means that the torque angle is   −34. 48∘. It follows from the phasor diagram
that the absolute value of the angle between


I q and


I a are

  | − |  |−36.87 − −34. 48|  2. 39∘. Therefore, the d-axis armature current is

I d  Ia sin∠ − 90∘  40sin 2. 39 

180 ∠−34. 48 − 90∘  1. 668∠ − 124. 48∘

 1. 668 cos −124. 48 
180  j sin −124. 48 

180  − 0.944 − j1. 375A
(a) The per-phase developed voltage is

Ea  Ea
,
− j

I dXd − Xq  79. 2 − j54. 4 − j−0.944 − j1. 3752.7 − 1.7

 77. 825 − j53. 456  77. 8252  53. 4562∠ tan−1 −53.456
77.825

180
  94. 415∠ − 34.

48∘V
(b) As Ra  0, the AC input power is the same as the developed power, that is,

Pd  Pin − Pcu  Pin  3VaIa cos  3  120  40  0.8  11520W
Or it can be calculated by

Pd 
3VaEa sin| |

Xd
 3Xd−Xq 

2XdXq
Va

2 sin|2|


312094.415sin 34.48 

180
2.7  32.7−1.7

22.71.7  1202  sin 2  34. 48 
180  11519W

(c) The output power is
Po  Pin − Pcu − Pr − Pstray  Pin − Pr  11520 − 0.05  11520  10944W

and the efficiency is
  Po

Pin
 100  10944

11520  100  95%
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5.2.3 Power Factor Correction
Example 5.5: A manufaturing plant uses 100kVA at 0.6 pf lagging under normal
operation. Select a synchronous AC motor to improve the overall power factor to 0.9
lagging.
Solution: SL  100kVA, L  cos−10.6 ∗ 180

  53. 13∘. Thus,
PL  SL cosL  60kW
QL  SL sinL  100sin 53.13  

180  80kVAR
Assume the synchronous motor rating is Sm with power angle m. Then,

Pm  Sm cosm

Qm  Sm sinm

The total powers are
P  PL  Pm  PL  Sm cosm

Q  QL  Qm  QL  Sm sinm

The overall power angle is   cos−10.9 ∗ 180
  25. 84∘, i.e.

tan  tan 25. 84  
180  0.48. So,

tan  Q
P  QLSm sinm

PLSm cosm

that is,
PL tan  Sm tancosm  QL  Sm sinm

or

PL tan  Sm tancosm  QL  Sm 1 − cos2m  PL tan − QL  Sm tancosm  Sm 1 − cos2m

Squaring both sides yields
PL tan − QL2 − Sm

2  2PL tan − QLSm tancosm  Sm tan2  Sm
2 cos2m  0

Solving this equation for cosm gives

cosm 
−2PL tan−QL Sm tan 4PL tan−QL Sm tan2−4 Sm tan2Sm

2 PL tan−QL 2−Sm
2

2 Sm tan2Sm
2


−PL tan−QL  tan PL tan−QL  tan2−tan21 PL tan−QL 2−Sm

2

Smtan21


−PL tan−QL  tan tan21Sm

2 −PL tan−QL 2

Smtan21

It is necessary to have
tan2  1Sm

2 − PL tan − QL2 ≥ 0 and
−PL tan − QL tan − tan2  1Sm

2 − PL tan − QL2 ≥ 0
that is,

Sm ≥ PL tan−QL 2

tan21
 600.48−802

0.4821
 47kVA

and
tan2  1Sm

2 − PL tan − QL2 ≤ PL tan − QL tan
Sm ≤ −PL tan  QL  −60  0.48  80  51. 2

For different synchronous motor ratings Sm, one can get different power factors. Now
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choose Sm  47kVA, then

cosm 
−PL tan−QL  tan tan21Sm

2 −PL tan−QL 2

Smtan21


−600.48−800.48 0.4821472−600.48−802

470.4821
 0.59,0.26

Therefore, m  −cos−10.59 ∗ 180
  −53. 8∘,m  −cos−10.26 ∗ 180

  − 74. 9∘,
which gives

P  60  47  0.59  87. 7kW
Q  80  47  sin −53.8  

180  42. 0kVAR
or

P  60  47  0.26  72. 2kW
Q  80  47  sin −74.9  

180  34kVAR
Selecting Sm  50kVA produces

cosm 
−PL tan−QL  tan tan21Sm

2 −PL tan−QL 2

Smtan21


−600.48−800.48 0.4821502−600.48−802

500.4821
 0.75,0.05

Therefore, m  −cos−10.75 ∗ 180
  − 41. 4∘,m  −cos−10.05 ∗ 180

  − 87. 1∘,
which gives

P  60  47  0.75  95.3kW
Q  80  47  sin −41.4  

180  48. 9kVAR
or

P  60  47  0.05  62.4kW
Q  80  47  sin −87.1  

180  33. 0kVAR

5.3 V-Curves for Synchronous Machines
Chapter 6 Induction Motors

6.1 Three-Phase Induction Motors
The essential components of an induction motor are a stator and a rotor. A balanced
three-phase winding is placed on the stator. There are two types of rotors: a
squirrel-cage rotor and a wound rotor. Rotor windings are short-circuited for both types
of rotors. When the stator winding of a three-phase induction motor is connected to a
three-phase power supply, it produces a rotating magnetic field which is constant in
magnitude and revolves at the synchronous speed given by

s 
4f
P or Ns 

120f
P

where f is the frequency of the power supply and P is the number of poles. This
rotating magnetic field induces emf in the rotor winding. Since the rotor winding is
short-circuited, the induced emf produces an induced current in the rotor winding,
which, together with the rotating magnetic field, induces torque on the rotor winding to
make the rotor spin at speed m. It is important to note that the induced voltage is
proportional to the relative speed of the rotor with respect to the synchronous speed of
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the rotating magnetic field. Such a relative speed is defined as the slip speed
r  s − m or Nr  Ns − Nm

and the ratio between the relative speed and the synchronous speed is referred to as
the slip

s  s−m
s  Ns−Nm

Ns

The motor speed can be expressed as
m  1 − ss or Nm  1 − sNs

The frequency of the induced voltage in the rotor is
fr  PNr

120  PNs−Nm
120  PNs

120
Ns−Nm

Ns
 sf

When the rotor is stationary, the slip is 1 and the rotor appears exactly like a
short-circuited secondary winding of a transformer. Therefore, an induction motor is a
transformer with a rotating secondary winding and the equivalent circuit for a
transformer can be used for an induction motor.
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cÎ
mÎ
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Figure 6.1 shows a per-phase equivalent circuit for a three-phase induction motor,
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where
V1 per-phase stator voltage

I 1 per-phase stator current
R1 per-phase stator resistance
L1 per-phase stator leakage inductance
X1  2fL1 per-phase stator leakage reactance

I r per-phase rotor current
Rr per-phase rotor resistance
Lr per-phase rotor leakage inductance
Xb  2fLr per-phase rotor leakage reactance at s1
Xr  2frLr  sXb per-phase rotor leakage reactance
Xm per-phase magnetization reactance
Rc per-phase core-loss resistance
E1 per-phase induced voltage in the stator winding
Eb per-phase induced voltage in the rotor winding at s1
Er  sEb per-phase induced voltage in the rotor winding

I  


I c 


I m per-phase excitation current


I c per-phase core-loss current

I m per-phase magnetization current
a effective turns ratio
Note that


I r  Er

RrjXr
 sEb

RrjsXb
 Eb

Rr
s jXb

Hence the equivalent circuit Figure 6.1 can be modified as Figure 6.2. Referring the
rotor side to the stator side, the equivalent circuit Figure 6.2 is transformed to the
equivalent circuit Figure 6.3. The approximate per-phase equivalent circuit is given as
Figure 6.4.
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mÎ
φÎ  
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Figure 6.4
The Stator Resistance Test
Let RL be the DC value of the resistance between any two terminals of the motor.
Then the per-phase resistance is

R1  0.5RL for Y-connection
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R1  1.5RL for -connection
The Blocked-Rotor Test
The rotor is held still by external torque and a variable three-phase power is applied to
the stator winding. The stator voltage is carefully increased from zero until the motor
draws the rated current. Let Vbr, Ibr, and Pbr be the input voltage, current, and power
on a per-phase basis. Then,

Re 
Pbr

Ibr
2

|Ze |  Vbr

Ibr
2

where Ze  Re  jXe  R1  R2  jX1  X2. Therefore,
R2  Re − R1

Xe  |Ze |2 − Re
2

For all practical purposes, it is assumed that X1  X2  0.5Xe

The No-Load Test
The rated voltage is applied to the stator winding and the motor operates without any
load. Let VNL, INL, and PNL be the input voltage, current, and power on a per-phase
basis. Let Pr be the rotational loss on a per-phase basis. Then the power loss in Rc is

Pc  PNL − Pr

and
Rc 

VNL
2

Pc

|Z |  VNL
INL

where Z  1
1

Rc
 1

jXm

. Note that 1
Z

2
 1

Rc

2
 1

Xm

2. As a result, we have

Xm  1

1
Z

2
− 1

Rc
2

Power Flow Diagram
The following are based on the exact per-phase equivalent circuit.
The input power: Pin  3V1I1 cos
The stator copper loss: Pscu  3I1

2R1

The air-gap power: Pag  Pin − Pscu  3I2
2 R2

s (the power consumed by R2
s 

The rotor copper loss: Prcu  3I2
2R2  sPag

The developed power: Pd  Pag − Prcu  Pag − sPag  1 − sPag  3I2
2 1−sR2

s

The rotational loss: Pr  Pc  Pfw  Pstray

The output power: Po  Pd − Pr
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The following are based on the approximate equivalent circuit.
It follows from the approximate equivalent circuit Figure 6.4 that the rotor current is


I 2  V1

R1R2jX1X2 
1−sR2

s

 V1

R1R2
1−sR2

s
2
X1X2 2

∠2

So the developed power is

Pd  3I2
2 1−sR2

s  3V1
2 1−sR2

s

R1R2
1−sR2

s
2
X1X2 2

which is a function of s. By differentiating Pd with respect to s and setting the
derivative to zero, we can find the slip for the maximum power, which is given by

smax,p  R2

R2 R1R2 2X1X2 2

and
Pd,max  3

2
V1

2

R1R2 R1R2 2X1X2 2

The Efficiency
Using the approximate equivalent circuit, the output power can also be calculated by

Po  Pd − Pr  Pag − Prcu − Pr  Pin − Pscu − Prcu − Pr  3V1I2 cos − 3I2
2R1 − 3I2

2R2 − Pr 
Therefore, the efficiency is

  Po
Pin

 3V1I2 cos−3I2
2R1R2 −Pr

3V1I2 cos

Differentiating  with respect to I2 and setting the derivative equal to zero gives
3I2

2R1  R2  Pr

which implies that the efficiency is maximum when the sum of the stator and the rotor
cooper losses is equal to the rotational loss, that is,

max  3V1I2 cos−2Pr
3V1I2 cos

at
I2,max,  Pr

3I2R1R2 

The Developed Torque
Note that Pd  md. Thus the developed torque is given by
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d 
Pd
m 

3V1
2 1−sR2

s

R1R2
1−sR2

s
2
X1X2 

2

m  3V1
2 1−sR2

s

1−ss R1R2
1−sR2

s
2
X1X2 2

 3V1
2R2

ss R1R2
1−sR2

s
2
X1X2 2

Differentiating d with respect to s and setting it equal to zero, it can be shown that the
slip for the maximum torque is given by

smax,  R2

R1
2X1X2 2

and the corresponding maximum torque (pull-out torque or break-down torque) is
given by

d,max 
3V1

2

2s R1 R1
2X1X2 2

Example 6.1: The following test data were obtained on a 460V, 4-pole, 60Hz,
-connected three-phase induction motor:
No-load test: power input380W, line current  1.15A at rated voltage.
Blocked-rotor test: power input15W, line current  2.1A at the line voltage of 21V.
The friction and windage loss is 21W, and the winding resistance between any two
lines is 1.2.
Determine (a) the equivalent circuit parameters of the motor, (b) the starting torque
and starting current by using the approximate equivalent circuit, (c) the motor speed,
developed torque, and efficiency at s5%, (d) the maximum torque and its
corresponding speed, (e) the maximum developed power and its corresponding
speed, and (f) plot the developed torque against the slip.
Solution:
(a) The per–phase resistance of the stator is R1  1.5RL  1.5  1.2  1. 8.
From the blocked-rotor test, Vbr  21V, Ibr  2.1

3
 1. 2A, Pbr  15

3  5W. Therefore,
the equivalent resistance is

Re 
Pbr

Ibr
2  5

1.22  3. 5

The rotor resistance is R2  Re − R1  3.5 − 1.8  1. 7
The equivalent impedance is

|Ze |  Vbr
Ibr

 21
1.2  17.5

The equivalent reactance is
Xe  |Ze |2 − Re

2  17.52 − 3.52  17. 1
From the no-load test, VNL  460V, INL  1.15

3
 0.66A, PNL  380

3  127W ,
Pc  380−21

3  120W. Therefore, the equivalent core resistance is
Rc 

VNL
2

Pc
 4602

120  1763.3
The excitation impedance is

|Z |  VNL
INL

 460
0.66  696. 97

The magnetization reactance is
Xm  1

1
Z

2
− 1

Rc
2
 1

1
696. 97

2
− 1

1763.3
2
 758. 76
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(b)
The synchronous speed is

s 
4f
P  460

4  188. 5rad/s or Ns 
120f

P  12060
4  1800rpm

The phase input voltage is V1  460∠0∘V.
The starting torque is

d |s1 
3V1

2R2

ss R1R2
1−sR2

s
2
X1X2 2

s1

 346021.7
188.5 3.50217.12  18. 8N  m

It follows from the approximate equivalent circuit that the rotor current at the time of
starting is

I 2  V1

R1R2jX1X2 
1−sR2

s

 460∠0∘
3.5j17.10  4603.5−j17.1

3.5j17.13.5−j17.1  4603.5−j17.1
3.5217.12  5. 3 − j25. 8A

The stator current at the time of starting is

I 1 


I  


I 2  V1

Rc
 V1

jXm


I 2  V1

1
Rc

 1
jXm



I 2

 460∠0∘ 1
1763.3  1

j758.76  5. 3 − j25. 8
 460 1

1763.3 − j 1
758.76  5. 3 − j25. 8

 5. 56 − j26. 41  5. 562  26. 412∠ tan−1 −26.41
5.56

180
  27.0∠ − 27.0∘A

(c)
The motor speed at s0.05 is m  1 − ss  1 − 0.05  188. 5  179.1rad/s or
Nm  1 − sNs  1 − 0.05  1800  1710rpm.
The developed torque is

d |s5%  3V1
2R2

ss R1R2
1−sR2

s
2
X1X2 2

s5%

 346021.7

0.05188.5 3.5 1−0.051.7
0.05

2
17.12

 72.

7N  m
It follows from the approximate equivalent circuit that the rotor current at s5% is


I 2  V1

R1R2jX1X2 
1−sR2

s

 460∠0∘

3.5j17.1 1−0.051.7
0.05

 46035.8−j17.1
35.8j17.135.8−j17.1  46035.8−j17.1

35.8217.12

 10. 46 − j5.0  10. 462  5.02∠ tan−1 −5.0
10.46

180
  11.6∠ − 25. 5∘A

The stator current at the time of starting is

I 1 


I  


I 2  V1

Rc
 V1

jXm


I 2  V1

1
Rc

 1
jXm



I 2

 460∠0∘ 1
1763.3  1

j758.76  10. 46 − j5.0
 460 1

1763.3 − j 1
758.76  10. 46 − j5.0

 10. 72 − j5. 61  10. 722  5. 612∠ tan−1 −5.61
10.72

180
  12.1∠ − 27. 6∘A

The input power is
Pin  3V1I1 cos  3  460  12.1  cos 27. 6 

180  14798W
The stator copper loss is Pscu  3I2

2R1  3  11.62  1.8  727W
The air-gap power is Pag  Pin − Pscu  14798 − 727  14071W
The rotor copper loss: Prcu  3I2

2R2  3  11.62  1.7  686W
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The developed power: Pd  Pag − Prcu  14071 − 686  13385W
The output power: Po  Pd − Pr  Pd − Pc − Pfw  13385 − 380 − 21 − 21  13005W
The efficiency is

  Po
Pin

 100  13005
14798  100  87. 9%

(d)
The slip for the maximum torque is

smax,  R2

R1
2X1X2 2

 1.7
1.8217.12

 0.099

and the corresponding maximum torque (pull-out torque or break-down torque) is
given by

d,max 
3V1

2

2s R1 R1
2X1X2 2

 34602

2188.5 1.8 1.8217.12
 88. 6N  m

The speed is
Nm  1 − sNs  1 − 0.099  1800  1622rpm

(e)
The slip for the maximum developed power is

smax,p  R2

R2 R1R2 2X1X2 2
 1.7

1.7 3.5217.12
 0.089

and
Pd,max  3

2
V1

2

R1R2 R1R2 2X1X2 2
 3

2
4602

3.5 3.5217.12
 15147W

The speed is
Nm  1 − sNs  1 − 0.089  1800  1640rpm

or
m  1 − ss  1 − 0.089  188. 5  171. 7rad/s

The developed torque is
d 

Pd,max
m  15147

171.7  88. 2N  m
(f) The relationship between the developed torque and the slip is given by

d 
3V1

2R2

ss R1R2
1−sR2

s
2
X1X2 2

 346021.7

s188.5 3.5 1−s1.7
s

2
17.12



5725.0
s  1

s 1.7s−1.7−3.52292.41
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Figure 6.6
Some Important Observation:

(1) When the motor is operating near its rated slip, which is less than 10%, the
developed torque is directly proportional slip.
(2) For a constant slip, the developed torque is directly proportional the square of the
applied voltage.

6.2 Single-Phase Induction Motors
6.2.1 Double Revolving-Field Theory
Similar to three-phase induction motors, single-phase motors have the stator and rotor
with the rotor winding short-circuited. Unlike three-phase induction motors,
single-phase induction motors have only one phase winding in the stator. A
single-phase AC voltage is applied to the stator winding, which produces an AC
current in the stator winding. Suppose that it  Im cost. Then, the resultant air-gap
magnetic flux density is given by

B  Bmax cost i  BCW  BCCW

where BCW and BCCW represent the clockwise and counterclockwise rotating magnetic
fields, respectively, defined by

BCW  0.5Bm cost i − 0.5Bm sint j
BCCW  0.5Bm cost i  0.5Bm sint j

The equation above implies that the sum of the clockwise and counterclockwise
rotating magnetic fields is equal to the stationary pulsating megnetic field, that is, the
stationary pulsating megnetic field can be resolved into two rotating magnetic fields,
each of equal magnetude but rotating at the synchronous speed in opposite directions.
The synchronous speed is determined by

s 
4f
P or Ns 

120f
P
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Suppose that the motor rotates in the counterclockwise direction at speed m. Define
s  s−m

s . Then, BCCW is called the forward magnetic field, denoted Bf, rotating at the
synchronous speed of fs  s while BCW the backward magnetic field at bs  −s,
denoted Bb. The slip of the motor is sf 

 fs−m
 fs

 s with respect to Bf and
sb  rs−m

rs  −s−m
−s  −2ss−m

−s  2 − s with respect to Bb.
Similar to three-phase induction motors, single-phase motors can be analyzed by

using the equivalent circuit. Figure 6.7 shows the equivalent circuit for a single-phase
AC motor at still, which is equivalent to the circuit with the effects of the forward and
backward magnetic fields separated, as shown in Figure 6.8. For a motor running at
speed m, the effective rotor resistance changes with the slip. The rotor resistance is
R2
s with respect to Bf while R2

2−s with respect to Bb. The final equivalent circuit is shown
in Figure 6.9.
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Define

Z1  R1  jX1

Zf  Rf  jXf  0.5 jXmR2/sjX2 
R2/sjX2Xm 

 0.5 jXmR2/sjX2 R2/s−jX2Xm 
R2/sjX2Xm R2/s−jX2Xm 

 0.5 jXm R2/s2X2X2Xm −jXmR2/s

R2/s2X2Xm 2  0.5 Xm
2 R2/sjXm R2/s2X2X2Xm 

R2/s2X2Xm 2

 0.5 Xm
2 R2/s

R2/s2X2Xm 2  j0.5 Xm R2/s2X2X2Xm 

R2/s2X2Xm 2

Zb  Rb  jXb  0.5 jXmR2/2−sjX2 
R2/2−sjX2Xm 

 0.5 jXmR2/2−sjX2 R2/2−s−jX2Xm 
R2/2−sjX2Xm R2/2−s−jX2Xm 

 0.5 jXm R2/2−s2X2X2Xm −jXmR2/2−s

R2/2−s2X2Xm 2  0.5 Xm
2 R2/2−sjXm R2/2−s2X2X2Xm 

R2/2−s2X2Xm 2

 0.5 Xm
2 R2/2−s

R2/2−s2X2Xm 2  j0.5 Xm R2/2−s2X2X2Xm 

R2/2−s2X2Xm 2

Rf  0.5 Xm
2 R2/s

R2/s2X2Xm 2

Xf  0.5 Xm R2/s2X2X2Xm 

R2/s2X2Xm 2

Rb  0.5 Xm
2 R2/2−s

R2/2−s2X2Xm 2

Xb  0.5 Xm R2/2−s2X2X2Xm 

R2/2−s2X2Xm 2

Then,
Zin  Z1  Zf  Zb

Thus, the stator current is

I 1  V1

Zin
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The input power is
Pin  Re V1


I 1
∗

 V1I1 cos

The stator copper loss is
Pscu  I1

2R1

The air-gap power due to the forward magnetic field is
Pagf  I1

2Rf  0.5I2f
2 R2

s

The air-gap power due to the backward magnetic field is
Pagb  I1

2Rb  0.5I2b
2 R2

2−s
The forward rotor copper loss is

Prcuf  0.5I2f
2 R2  sPagf

The backward rotor copper loss is
Prcub  0.5I2b

2 R2  2 − sPagb

The power developed by the forward magnetic field is
Pdf  Pagf − Prcuf  1 − sPagf

The power developed by the backward magnetic field is
Pdb  Pagb − Prcub  −1 − sPagb

The total developed power is
Pd  Pdf  Pdb  1 − sPagf − Pagb  1 − sPag

So, the net air-gap power is
Pag  Pagf − Pagb

The mechanical developed power is
Pd  1 − sPag  dm  1 − sds

The developed torque is
d 

Pd
m  1−sPag

1−ss


Pagf−Pagb
s 

Pagf
s −

Pagb
s   fd − bd

The output power is
Po  Pd − Pr

where the rotational loss is Pr  Pc  Pfw  Pstray.
Example 6.2: A 4-pole 110V 50Hz single-phase induction motor has R1  2,
X1  2.8, R2  3.8, X2  2.8, and Xm  60. The rotational loss is 20W.
Determine the shaft torque, the motor efficiency when the slip is 4%, and the
developed torque characteristics.
Solution:The synchronous speed is

s 
4f
P  450

4  157. 08rad/s or Ns 
120f

P  12050
4  1500rpm

The impedances are
Z1  R1  jX1  2  j2.8
Zf  Rf  jXf 

0.5jXm0.5R2/sj0.5X2 
0.5jXm0.5R2/sj0.5X2 

 0.5 jXmR2/sjX2 
R2/sjX2Xm 

 0.5 j603.8/0.04j2.8
3.8/0.04j2.860

 0.5 −168j5700
95.0j62.8  0.5 −168j570095−j62.8

95j62.895−j62.8  0.5 3.42105j5.5205105

95262.82  13. 185  j21. 284

Zb  Rb  jXb 
0.5jXm0.5R2/2−sj0.5X2 

0.5jXm0.5R2/2−sj0.5X2 
 0.5 jXmR2/2−sjX2 

R2/2−sjX2Xm 
 0.5 j603.8/2−0.04j2.8

3.8/2−0.04j2.860
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 0.5 −168.0j116.33
1.9388j62.8  0.5 −168.0j116.331.9388−j62.8

1.9388j62.81.9388−j62.8  0.56979.8j10776
1.9388262.82  0.88406  j1. 3649


Zin  Z1  Zf  Zb  2  j2.8  13. 185  j21. 284  0.88406  j1. 3649  16.

069  j25. 449
Thus, the stator current is


I 1  V1

Zin
 110∠0∘

16.069j25.449  110∠0∘

16.069225.4492∠ tan−1 25. 449
16. 069

180


 110∠0∘
30.098∠57.731∘  3.

6547∠ − 57. 731∘A

I 2f 

j Xm
2

R2
2s j X2

2  Xm
2


I 1 

jXm
R2
s jX2Xm 


I 1 

j60
3.8
0.04 j2.860

3. 6547∠ − 57. 731∘

 60∠90∘ 3.6547∠−57.731∘ 

3.8
0.04

2
2.8602∠ tan−1 2.860

3.8
0.04

180


 60∠90∘ 3.6547∠−57.731∘ 
113.88∠33.467∘  1. 9256∠ − 1. 198∘A


I 2b 

j Xm
2

R2
22−s j X2

2  Xm
2


I 1 

jXm
R2
s jX2Xm 


I 1 

j60
3.8

2−0.04 j2.860
3. 6547∠ − 57. 731∘

 60∠90∘ 3.6547∠−57.731∘ 

3.8
2−0.04

2
2.8602∠ tan−1 2.860

3.8
2−0.04

180


 60∠90∘ 3.6547∠−57.731∘ 
62.830∠88.232∘  3. 4901∠ − 55. 963∘A

The input power is
Pin  Re V1


I 1
∗

 V1I1 cos  110  3. 6547  cos 57. 731 
180  214. 63W

The stator copper loss is
Pscu  I1

2R1  3. 65472  2  26. 714W
The air-gap power due to the forward magnetic field is

Pagf  I1
2Rf  3. 65472  13. 185  176. 11W or  0.5I2f

2 R2
s  0.5  1. 92562 3.8

0.04 
176. 13W
The air-gap power due to the backward magnetic field is

Pagb  I1
2Rb  3. 65472  0.88406  11. 808W or  0.5I2b

2 R2
2−s  0.5  3.

49012  3.8
2−0.04  11. 808W

The net air-gap power is
Pag  Pagf − Pagb  176. 13 − 11. 808  164. 32W

The mechanical developed power is
Pd  1 − sPag  1 − 0.04  164. 32  157. 75W

The output power is
Po  Pd − Pr  157. 75 − 20  137. 75W

The efficiency is
  137.75

214.63  100  64.2%
The motor speed is

m  1 − ss  1 − 0.04  157. 08  150. 80rad/s
The motor shaft torque is

o  Po
m  137.75

150.80  0.91346N  m
The developed torque of the forward and backward magnetic field is
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df 
1−sPagf

m 
V1

2Rf

s R1RfRb 
2X1XfXb 

2 
1102Rf

157.08 2RfRb 
22.8XfXb 

2

db 
V1

2Rb

s R1RfRb 
2X1XfXb 

2  1102Rb

157.08 2RfRb 
22.8XfXb 

2

with
Rf  0.5 6023.8/s

3.8/s22.8602

Xf  0.5 60 3.8/s22.82.860

3.8/s22.8602

Rb  0.5 6023.8/2−s
3.8/2−s22.8602

Xb  0.5 60 3.8/2−s22.82.860

3.8/2−s22.8602

d 
1102Rf

157.08 2RfRb 
22.8XfXb 

2 − 1102Rb

157.08 2RfRb 
22.8XfXb 
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Figure 6.10 d (thick solid line) df (dashed line); df (dot dot dashed line)

6.2.2 Types of Single-Phase Induction Motors
It is observed from Figure 6.10 that the developed torque is the torque developed by
the forward magnetic field less the torque developed by the backward magnetic field.
It is noted that df and db are the same at the starting moment, so the starting torque
is zero, which means that this motor cannot start by itself. However, by introducing an
extra winding and some capacitors, single-phase induction motors can be made
self-starting.
1. Split-Phase Motors
A split-phase induction motor has two separate windings: main winding and auxiliary
winding. They are placed in space quadrature and connected to a single-phase power
source. The main winding has a low resistance and high inductance and carries
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current to establish the main flux at the rated speed. The auxiliary winding has a high
resistance and low inductance and is desconnected from the supply by a centrifugal
switch when the motor reaches a speed of nearly 75% of its synchronous speed.
At the time of starting, the main winding current lags the applied voltage by almost 90∘
owing to its high inductance (large number of turns) and low resistance (large size
wire) while the auxiliary winding current is essentially in phase with the applied voltage
due to its low inductance and high resistance. Since the two windings are placed in
space quadrature and carry out-of-phase currents, a rotating magnetic field is
produced in the air-gap and the motor is able to rotate by itself.
2. Capacitor-Start Motors
In split-phase motor, the main winding current does not lag the auxiliary winding
current exactly by 90∘. However, by connecting a capacitor in series with the auxiliary
winding, it is possible to make the main winding current lag the auxiliary winding
current exactly by 90∘.
3. Capacitor-Start Capacitor Run Motors
The power factor for both split-phase and capacitor start motors is low and so is
efficiency, usually 50%-60%. The efficiency can be improved by employing another
capacitor when the motor runs at the rated speed. This led to the development of a
capacitor-start and capacitor-run motor.
4. Permanent Split-Capacitor Motors
The permanent split-capacitor motor is developed by removing the start-capacitor and
cetrifugal switch from the capacitor-start capacitor-run motor.

Chapter 7. Special Motors
7.1 Universal Motors
A DC series motor specially designed for AC operation is usually referred to as a
universal motor. The equivalent circuit is shown in Figure 7.1

jXa

Ra
sV̂

Rs      jXs 

aÊ

aÎ

Figure 7.1
The phasor diagram for a lagging load is shown in Figure 7.2.
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aÊ
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Figure 7.2
Example 7.1: A 120V 60Hz 2-pole universal motor operates at a speed of 8000rpm on
full load and draws a current of 17.58A at a lagging power factor of 0.912. The
impedance of the series field winding is 0.65j1.2. The impedance of the armature
winding is 1.36j1.6. Determine (a) the induced voltage, (b) the power output, (c) the
shaft torque, and (d) the efficiency if the rotational loss is 80W.
Solution: From the equivalent circuit, we have

Ea  Vs −

I aRs  Ra  jXs  jXa  120 − 17.58∠ − 24.22∘0.65  1.36  j1.2  1.6

 120 − 17.58 cos −24.22 
180  j sin −24.22 

180 0.65  1.36  j1.2  1.6
 67. 581 − j30. 395  67. 5812  30. 3952∠ tan−1 −30.395

67.581
180
  74.1∠ − 24. 22∘V

Note that the induced voltage is in phase with the armature current.
The input power is

Pin  VsIa cos  120  17.58  0.912  1924W
The copper loss

Pcu  Ia
2Rs  Ra  17.5820.65  1.36  621. 2W

The developed power is
Pd  Pin − Pcu  1924 − 621.2  1302. 8W

The output power is
Po  Pd − Pr  1302. 8 − 80  1222. 8W

The efficiency is
  Po

Pin
 100  1222.8

1924  100  63. 6%
The motor speed is

m  2n
60  28000

60  837. 76rad/s
The shaft torque is

o  Po
m  1222.8

837.76  1. 46N  m

7.2 Permanent DC Motors
A DC motor with the magnetic field being produced by permanent magnets is called
the permanent DC motor. The equivalent circuit for a permanent DC motor is shown in
Figure 7.3.
The dynamical equations are given by
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eat  Kaat
dt  Kaaiat
vat  Raiat  La

diat
dt  Kaat

J dt
dt  Kaaiat − Lt − Dt

The steady-state quantities are calculated by letting diat
dt and dt

dt be zero, that is,
ea  Kaa
d  Kaaia
va  Raia  Kaa
0  Kaaia − L − D

 

ea 

Ra          La     ia + 
 
va
 
_ 

Figure 7.3
Example 7.2: Calculate the magnetic flux in a 200W, 100V PM DC motor operating at
1500rpm. The motor constant is 85, the armature resistnace is 2, and the rotational
loss is 15W.
Solution:   2n

60  21500
60  157. 08rad/s

The developed power is Pd  Po  Pr  200  15  215W
The developed torque is d  Pd

  215
157.08  1. 3687N  m

It follows from d  Kaaia that
ia  d

Kaa

Substituting this into va  Raia  Kaa gives
va  Ra

d
Kaa

 Kaa
that is,

100  2 1.3687
85a

 85  157. 08a
2

or
8500a  2  1. 3687  852  157. 08a

2

Solving this for positive a produces

a 
8500 85002−421.3687852157.08

2852157.08
 7. 1524  10−3 and 3. 3723  10−4

Because ea  Kaa  85  3. 3723  10−4  157. 08  4. 5026V is too small and
ea  Kaa  85  7. 1524  10−3  157. 08  95. 497V is reasonable, so a  7.
1524  10−3Wb.

7.3 Stepper Motors
m  2

P e

m  2
P e
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nm  2
P ne

ne  1
2N npulses

nm  1
NP npulses

where P is the number of poles, N is the number of phases, m is the mechanical
angle, e is the electrical angle, m and nm are the mechanical speed, e and ne are
the electrical speed, npulses is the number of pules per minute.
Example 7.3: A three-phase permanent-magnet stepper motor required for one
particular application must be capable of controlling the position of a shaft in steps of
7.5∘, and it nust be capable of running at speeds of up to 300rpm. (a) How many poles
must this motor have? (b) At what rate must control pulses be received in the motor’s
control unit if it is to be driven at 300rpm?
Solution: (a) In a three-phase stepper motor, each pulse advances the rotor’s position
by 60 electrical degrees. This advance must correspond to 7.5 mechanical degrees.
Solving m  2

P e for P yields
P  2 e

m
 2 60

7.5  16 poles
(b) Solving nm  1

NP npulses for npulses gives
npulses  NPnm  3  16  300  14400 pulses/minute240 pulses/s
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Formula Sheet for the Final Exam:
B  H,  BA,0  4  10−7H/m
  ℱ

 ,ℱ  Ni,  l
A

e  d
dt ,  N,L  

i  N2



W,x  1
2L 

2,Wi,x  1
2 Li2

f  − ∂W,x
∂x  1

2 
2 1

L2
dLx

dx , f  ∂Wi,x
∂x  1

2 i2 dLx
dx

e1  d1
dt ,e2  d2

dt ,1  11  12  L11i1  L12i2,2  21  22  L21i1  L22i2

W1,2,  1
2 Γ11

2 1
2  Γ1212  1

2 Γ222
2,Wi1, i2,  1

2 L11i1
2  L12i1i2  1

2 L22i2
2

  − ∂W1,2,
∂  1

2 1
2 dΓ11

d  12
dΓ12

d  1
2 2

2 dΓ22
d

 
∂Wi1,i2,

∂  1
2 i1

2 dL11
d  i1i2

dL12
d  1

2 i2
2 dL22

d

e  l v  B, f  i l  B
eat  Keiftt,dt  Kiftiat
s  KeIfVasLaia0LasRa J0−Ls

JsDLasRa KeIf 
2

Ias 
VasLaia0JsD−KeIfJ0−Ls

JsDLasRa KeIf 
2

Ifs 
VfsLfif0

LfsRf

ZY  1
3 Z,Van 

Vab

3
∠ − 30∘,


I A′  3


I A∠ − 30∘

-Y connection: EA1  aEA2∠ − 30∘,

I A2

,
 1

a

I A2∠ − 30∘

Y- connection: EA1  aEA2∠30∘,

I A2

,
 1

a

I A2∠30∘

m  1 − ss,s 
4f
P

Ea
,
 Ea − j


I dXd − Xq(syn. generator),Ea

,
 Ea  j


I dXd − Xq(syn. motor)

Pd  3I2
2 1−sR2

s  3V1
2 1−sR2

s

R1R2
1−sR2

s
2
X1X2 2

,d 
3V1

2R2

ss R1
R2
s

2
X1X2 2

smax,p  R2

R2 R1R2 2X1X2 2
,Pd,max  3

2
V1

2

R1R2 R1R2 2X1X2 2

smax,  R2

R1
2X1X2 2

,d,max 
3V1

2

2s R1 R1
2X1X2 2

Zf  Rf  jXf  0.5 jXmR2/sjX2 
R2/sjX2Xm 

 0.5 Xm
2 R2/s

R2/s2X2Xm 2  j0.5 Xm R2/s2X2X2Xm 

R2/s2X2Xm 2

Zb  Rb  jXb  0.5 jXmR2/2−sjX2 
R2/2−sjX2Xm 

 0.5 Xm
2 R2/2−s

R2/2−s2X2Xm 2  j0.5 Xm R2/2−s2X2X2Xm 

R2/2−s2X2Xm 2

Pagf  I1
2Rf  0.5I2f

2 R2
s ,Pagb  I1

2Rb  0.5I2b
2 R2

2−s
Pdf  Pagf − Prcuf  1 − sPagf,Pdb  Pagb − Prcub  −1 − sPagb

Pd  1 − sPag,Pag  Pagf − Pagb

Pd  1 − sPag  dm  1 − sds

d 
Pagf
s −

Pagb
s   fd − bd

eat  Kaat,dt  Kaaiat
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m  2
P e,nm  1

NP npulses

Review
Chapter 1. Magnetic Circuit

i
φ

N

Figure R.1
B  H,  BA,0  4  10−7H/m,
  ℱ

 ,ℱ  Ni,  l
A

eq  1  2 , 1
eq

 1
1

 1
2



e  d
dt  L di

dt ,L  
i  N2

 ,  N

i1
φ

N1

i2

N2

Figure R.2
1  11  12  L11i1  L12i2,2  21  22  L21i1  L22i2

L11  11
i1

,L12  12
i2

,L21  21
i1

 L12, L22  22
i2

Chapter 2. Electromechanical Energy Conversion
 

+ 

v 

R 

+ 

e 

f x
g

g

i 

N

Figure R.3 A singly excited linear actuator
W,x  1

2L 
2,Wi,x  1

2 Li2
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f  − ∂W,x
∂x  1

2 i2 dLx
dx , f  ∂Wi,x

∂x  1
2 i2 dLx

dx

 

+ 

v1 

+ 

e1 

i1 

N

θ
τ

+ 

v2 

+

e2 

i2  

Figure R.4 A doubly excited actuator
W1,2,  1

2 Γ11
2 1

2  Γ1212  1
2 Γ222

2,Wi1, i2,  1
2 L11i1

2  L12i1i2  1
2 L22i2

2

  − ∂W1,2,
∂  1

2 i1
2 dL11

d  i1i2
dL12

d  1
2 i2

2 dL22
d

 
∂Wi1,i2,

∂  1
2 i1

2 dL11
d  i1i2

dL12
d  1

2 i2
2 dL22

d

Chapter 3 Dynamics of Electromechanical Systems

Lf

if      Rf + 
 
vf 
 
_ 

ea 

Ra          La     ia + 
 
va 
 
_ 

 
RL 
 
LL 

Figure R.5 Equivalent circuit of a dc generator
Vf  Rfift  Lf

dift
dt

eat  Keift  Ra  RLiat  La  LL
diat

dt

Ifs 
VfsLfif0

LfsRf

Ias 
KeVfsLfif0LaLL ia0LfsRf 

LfsRf LaLL sRaRL 

 

ea

Ra          La     ia + 

 

va 

Figure R.6
vft  Rfift  Lf

dift
dt

vat  Raiat  La
diat

dt  eat
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eat  Keiftt
dt − Lt − Dt  J dt

dt
dt  Kiftiat
Chapter 4 Transformers

 

2Ê
2/ ajXm  

2/ aRc

cI ′ˆ
mI ′ˆ
φI ′ˆ

2jX   2R  2
1 / ajX  2

1 / aR  
11 ÎaI =′

2Î  

aVV /ˆˆ
11 =′  

2̂V     2Z  

Figure R.7 The equivalent circuit as viewed from the secondary side

 

aV1̂  

1Ê

2Ê
aV2

ˆ

aE1
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aE2
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1̂I

2Î

aI 2
ˆ

aI1̂
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1N

Figure R.8 A step-down authotransformer
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aV1̂  

2Ê  

1Ê  
aV2̂  

aE1
ˆ  

aE2
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2Î  

1̂I  

aI2
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aI1̂  
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1N  

Figure R.9 A step-down authotransformer
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aE1
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Figure R.10 A step-up autotransformer
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aV1̂  2Ê

1Ê

aV2̂

aE1
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aE2
ˆ

2Î

1̂I

aI 2
ˆ

aI1̂
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1N

Figure R.11 A step-up autotransformer
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Figure R.12
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1Ê
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LaZ

1̂I

1cR  
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2jX

1jX1mjX

aI1̂  

aI φ̂

caÎ  
maÎ

Figure R.13
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1A  

1B   2B  1C   2C  

1a   2a  

1b   2b  
1c   2c  

1a  

1A  

1B  

1b  

1C  

1c  

2a  

2A  

2B  

2b  

2C  

2c  

1n   2n  

1a  

1A  

1B  

1b  

1C  

1c  

2A  

2B  2C  

2a  
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2c  
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2A  
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2A  

2B  

2b  

1n  
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1B  1C  
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1b  
1c  
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Figure R.14
ZY  1

3 Z,Van 
Vab

3
∠ − 30∘,


I A′  3


I A∠ − 30∘
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Figure R.18  − Y transformation
 

1
ˆ

AE  
2

ˆ
AE  

1mAjX  
1cAR  

1
ˆ
cAI  

1
ˆ
mAI  

1
ˆ

AIφ  
2

ˆ
AI ′  

2AjX  
2AR  1AjX  

1A
R  

1
ˆ
AI  

a

2
ˆ
AI  

11
ˆ

naV  
22

ˆ
naV      2Z  

Figure R.19
-Y connection: EA1  aEA2∠ − 30∘,


I A2

,
 1

a

I A2∠ − 30∘

Y- connection: EA1  aEA2∠30∘,

I A2

,
 1

a

I A2∠30∘

Chapter 5 Synchronous Machines

fI  

fV  

fR  

fL  

sjX
aR

aÎ

aV̂  aÊ

Figure R.20 The per-phase equivalent circuit of a
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qÊ  

aR  

aÎ  

aV̂  aÊ  

qjX  
aR  

aÎ  

aV̂  aE ′ˆ  

dÊ  

Figure R.21
Ea

,
 Ea − j


I dXd − Xq

fI  

frI  

fR  

fL  

sjX
aR

aÎ

aV̂  aÊ

Figure R.22 The per-phase equivalent circiut of a

qÊ  

aR  

aÎ  

aV̂  aÊ  

qjX  
aR  

aÎ  

aV̂  aE ′ˆ  

dÊ  

Figure R.23
Ea

,
 Ea  j


I dXd − Xq

Chapter 6 Induction Motors
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mÎ
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Figure R.24
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Pd  3I2
2 1−sR2

s  3V1
2 1−sR2

s

R1R2
1−sR2

s
2
X1X2 2

,d 
3V1

2R2

ss R1
R2
s

2
X1X2 2

smax,p  R2
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Figure R.25
Zf  Rf  jXf  0.5 jXmR2/sjX2 

R2/sjX2Xm 
 0.5 Xm

2 R2/s
R2/s2X2Xm 2  j0.5 Xm R2/s2X2X2Xm 

R2/s2X2Xm 2

Zb  Rb  jXb  0.5 jXmR2/2−sjX2 
R2/2−sjX2Xm 

 0.5 Xm
2 R2/2−s

R2/2−s2X2Xm 2  j0.5 Xm R2/2−s2X2X2Xm 

R2/2−s2X2Xm 2

Pagf  I1
2Rf  0.5I2f

2 R2
s ,Pagb  I1

2Rb  0.5I2b
2 R2

2−s
Pdf  Pagf − Prcuf  1 − sPagf,Pdb  Pagb − Prcub  −1 − sPagb

Pd  1 − sPag,Pag  Pagf − Pagb

Pd  1 − sPag  dm  1 − sds

d 
Pagf
s −

Pagb
s   fd − bd
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Figure R.26
eat  Kaat,dt  Kaaiat
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Figure R.27
m  2

P e,nm  1
NP npulses
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