
Chapter 1. Magnetic Circuit
1.1 Magnetic Circuit (Lecture 1)
Consider a simple magnetic structure as shown in Figure 1.1. The following
assumptions are made for simplifying magnetic circuit analysis:
(A1) The magnetic flux is restricted to flow through the magnetic materials with no
leakage;
(A2) The magnetic flux density is uniform within the magnetic materials.
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Figure 1.1
If the coil has N turns and carries a current i, the magnetomotive force (mmf) in A  t,
produced by the current i, is

ℱ  Ni
Similar to the voltage in an electric circuit, the magnetovoltage force has polarities,
which can be determined by the right hand rule: If the coil is grasped in the right hand
with the fingers pointing in the direction of the current, the thumb will point to the
positive palarity of the mmf.
Ampere’s law states that the line integral of the tangential component of the magnetic
field intensity H (in A/m) around a closed path C is equal to the total current passing
through the surface enclosed by the path, that is,

ℱ  Hd l  Hcosdl

where l is the length vector whose direction is chosen in a way so that the angle
between H and d l is the smallest and  is the angle between the vectors H and d l .
The direction of H is determined by the right-hand rule:
The right-hand rule 1: Imagine a current-carrying conductor held in the right hand
with the thumb pointing in the direction of current flow, the fingers then point in the
direction of the magnetic field created by that current.
The right-hand rule 2: If the coil is grasped in the right hand with the fingers pointing
in the direction of the current, the thumb will point in the direction of the magnetic field.
Due to (A1), the mean path can be chosen to calculate the magnetic field intensity H.
Note that   0. Thus,

ℱ  Hl
where l is the mean length of the magnetic core.
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The magnetic field intensity H is related to the magnetic flux density B (in Wb/m2) by
B  H

where   r0 is called the magnetic permeability (in H/m) with r the relative
permeability and 0  4  10−7H/m the permeability of the air or free space.
The flux in the core is determined by

  BA
where A represents the cross-sectional area of the magnetic core.
Therefore, ℱ  Hl can be rewritten as

ℱ  Hl  B
 l 


A
 l  l

A   

where   l
A is defined as the reluctance of the magnetic circuit.

Comparing the expression ℱ   with Ohm’s law V  RI, we find that  is analogous
to R,  to I, and ℱ to V. This analogy enables us to represent the magnetic core in
terms of an equivalent magnetic circuit as shown in Figure 1.1. Like the voltage source
in the electric circuit, the mmf in the magnetic circuit has a polarity. The positive end of
the mmf source is the end from which the flux exits and the negative end is the end at
which the flux re-enters.
Reluctances in a magnetic circuit obey the same rules as resistances in an electric
circuit. The equivalent reluctance of a number of reluctances in series is just the sum
of the individual reluctances:

eq  1  2 
Similarly, reluctances in parallel combine according to the equation

1
eq

 1
1

 1
2



Example 1.1:
A magnetic core is shown in Figure 1.2. Both depth and width are 3cm and its mean
length is 30cm. The length of the air-gap is 0.05cm. The coil has 500 turns. The
relative permeability of the core is assumed to be 70,000. Neglect fringing effects and
assume the flux density of the core is Bc  1.0Wb/m2. Find the reluctances of the core
and air-gap, flux in the core, and the current required.
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Figure 1.2 Magnetic circuit
Solution: The reluctance of the core is calculated by

c  lc
r0Ac

 3010−2

70000410−70.030.03
 3789. 4A  t/Wb

The reluctance of the air-gap is
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a  la
0Aa

 0.0510−2

410−70.030.03
 442100A  t/Wb

The total reluctance in the magnetic circuit is given by
  c  a  3789. 4  442100  445890A  t/Wb

The flux in the magnetic circuit is
  BcAc  1.0  0.03  0.03  0.0009Wb

The current in the coil is
i  

N  0.0009445890
500  0.8026A

Example 1.2: Consider the magnetic circuit as shown in Figure 1.3. Determine the flux
through various magnetic paths.
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Figure 1.3 Magnetic circuit
Solution: The reluctance in the center leg is center  3  4

The total reluctance seen from the coil side is
total  1  3  4‖2  1  34 2

342
 1342 34 2

342

The flux in the left leg is
1  ℱ

total
 Ni

1342 34 2
342

The flux in the center leg is
3  ℱ2

center
 1center‖2 

center
 1

center

center2
center2  12

342

The flux in the right leg is
2  ℱ2

2
 1center‖2 

2
 1

2

center2
center2

 134 
342

where
1  la

r0A ,2 
lb

r0A ,3  2lc
r0A ,4 

lg

0A

1.2 Eddy Current Loss, and Hyteresis Loss (Lecture 2)
Induced Voltage
Consider the magnetic circuit as shown in Figure 1.1, with the cross-sectional area A
and the mean length l. Assume that the flux is a sinusoidal function of time, that is,

t  max sint  ABmax sint
where max and Bmax are the amplitudes of the flux and the flux density, respectively,
and   2f.
It follows from Faraday’s law that the induced voltage is given by
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et  N d
dt  Nmax cost  Emax cost

where Emax  Nmax  NABmax  2fNABmax.
In steady-state operation, we are interested in rms values of voltages and currents.
The rms value of the induced voltage is given by

E  2
2

fNABmax  2 fNABmax

Excitation Current
To produce a magnetic flux in a magnetic core, a current is required, which is referred
to as the excitation current, denoted it. Due to the nonlinearity of the B-H curve and
the hysteresis property of the magnetic materials, it  Hl

N is not a sinusoidal
function.
Eddy Current Loss
A time-varying flux induces an emf in the magnetic core in accordance with Faraday’s
law. Since the magnetic materials are good conductors, the induced emf produces a
current along a closed path inside the magnetic core. Such a current is called eddy
current because its swirling pattern resembles the eddy current of water.
As a consequence of this eddy current, energy is converted into heat in the resistance
of the path, which gives rise to the power loss. Such a loss is referred to as the eddy
current loss, which is determined by

Pe  kef22Bmax
2 V

where Pe is the eddy-current loss in watts (W), ke is a constant that depends on the
conductivity of the magnetic material, f is the frequency in hertz Hz,  is the
lamination thickness in meters m, Bmax is the maximum flux density in teslas T, and
V is the volume of the magnetic material in cubic meters m3.
To reduce the effects of eddy currents, magnetic structures are usually built of thin
sheets of laminations of the magnetic material, insulated from each other by an oxide
layer or by a thin coat of insulation materials.
Hysteresis Loss
Assume that the flux in the core is initially zero. An AC current is applied to the
winding. As the current increases for the first time, the flux in the core traces out path
ab as shown in Figure 1.4. However, when the current decreases, the flux traces out a
different path bcd, and later when the current increases again, the flux traces out path
deb. This failure to retrace flux paths is called hysteresis. The path bcdeb is called a
hysteresis loop.
Each time the magnetic material is made to traverse its hysteresis loop, it produces a
power loss, which is commonly referred to as the hysteresis loss. The hysteresis loss
can be determined by

Ph  khfBmax
n V

where Ph is the hysteresis loss in watts (W), kh is a constant that depends on the
magnetic material, and n is the Steinmetz exponent.
Core Loss
It is a common practice to lump the eddy current loss and hysteresis loss together to
define the core loss

Pcore  Pe  Ph  kef22Bmax
2 V  khfBmax

n V  Kef2Bmax
2  KhfBmax

n
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where Ke  ke2V and Kh  khV.

1.3 Flux Linkage, Inductance, and Mutual Inductance
Inductance
Consider the magnetic circuit as shown in Figure 1.1. Faraday’s law states that if a
flux  passes through a winding of N turns, a voltage will be induced in the winding
and the induced voltage e is directly proportional to the rate of change in the flux
linkages   N with respect to time, that is,

e  − d
dt  −N d

dt
where the minus sign means that the polarity of the induced voltage is such that if the
winding ends were short-circuited, it would produce current that would cause a flux
opposing the original flux change.
The self inductance or inductance (in H) of the winding is defined as the ratio of the
flux linkages and the current, that is,

L  
i  N 

i
If L is constant, then

e  − d
dt  − dLi

dt  −L di
dt

L depends on the physical dimensions of the magnetic circuit and the permeability of
the magnetic materials. For the magnetic circuit as shown in Figure 1.1, L can be
determined as follows:

L  
i  N 

i  N
ℱ

i  N N

  N2



Example 1.3: The magnetic circuit of Figure 1.4 consists of an N-turn winding on a
magnetic core of infinite permeability with two parallel air gaps of lengths g1 and g2
and areas A1 and A2, respectively. Find the inductance of the winding and the flux
density B1 in gap 1 when the winding is carrying a current i. Neglect fringing effects at
the air gaps.
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Figure 1.4
Solution: The equivalent circuit shows that the total reluctance is equal to the parallel
combination of the two gap reluctances 1 

g1
0A1

and 2 
g2
0A2

. Thus

  N  N ℱ
  N Ni

12
12

 N2i12 
12

and
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L  
i  N212 

12


N2 g1
0A1


g2

0A2
g1

0A1

g2
0A2

 0N2 A1
g1  A2

g2

The flux in gap 1 is
1  Ni

1
 0A1Ni

g1

and thus
B1 

1
A1

 0Ni
g1

Mutual Inductance (Lecture 3)
Consider the magnetic circuit as shown in Figure 1.5. If a current i1 is applied to coil-1
while a current i2 to coil-2, then the total mmf is

i1 

1ℑ 2ℑ

ℜ
i

φ

N1 

i2

N2

φ

Figure 1.5
ℱ  N1i1  N2i2

The reluctance of the core is
  l

A

The flux in the core is given by
  ℱ

  N1
 i1  N2

 i2  N1
A
l i1  N2

A
l i2

The flux linkage of coil-1 is
1  N1  N1

2 A
l i1  N1N2

A
l i2

which can be written
1  L11i1  L12i2  11  12

where
L11  11

i1
 N1

2 A
l

is the self-inductance of coil 1 and 11  L11i1 is the flux linkage of coil-1 due to its own
current i1. The mutual inductance from coil-2 to coil-1 is

L12  12
i2

 N1N2
A
l

and 12  L12i2 is the flux linkage of coil-1 due to the current i2.
Similarly, the flux linkage of coil-2 is

2  N2  N1N2
A
l i1  N2

2 A
l i2  L21i1  L22i2  21  22

with L21  21
i1

 L12  N1N2
A
l , L22  22

i2
 N2

2 A
l , 21  L21i2, and 22  L22i2.

Now suppose 12  k111 and 21  k222. Then it is easily checked that
L12L21  12

i2

21
i1

 k111
i2

k222
i1

 k1k2L11L22
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In a linear system, L12  L21  M. Therefore,
M  k L11L22

where k  k1k2 is known as the coefficient of coupling or the coupling factor between
the two coils.
If the inductances are constant, then the induced voltages can be calculated by

e1  d1
dt  dL11i1L12i2 

dt  L11
di1
dt  L12

di2
dt

e2  d2
dt  dL21i1L22i2 

dt  L21
di1
dt  L22

di2
dt

Example 1.4: A magnetic circuit with two windings was tested with an AC source at
60Hz and the following data were recorded.
Test Coil Condition RMS Voltage (V) RMS Current (A)
1 Coil-1 connected to a voltage source 80 1.5

Coil-2 open circuit 30 0
2 Coil-2 connected to a voltage source 60 1.0

Coil-1 open circuit 20 0
Assume the magnetic circuit operated in the linear region and neglect the hysteresis
effects. Neglect the winding resistances. Determine the self inductance, mutual
inductance, and coupling factor.
Solution: The AC currents can be expressed by ijt  2 Ij cost with   2f and
j  1,2. For the first test, the following equations are obtained:

v1  e1  L11
di1
dt  L12

di2
dt  L11

di1
dt  − 2 L11I1 sint

v2  e2  L21
di1
dt  L22

di2
dt  L21

di1
dt  − 2 L21I1 sint

which implies that the rms values of v1 and v2 are equal to L11I1 and L21I1, that is,
V1  L11I1  L11  V1

I1
 80

2601.5  0.14147H
V2  L21I1  L21  V2

I1
 30

2601.5  53.05mH
Similarly, it follows from the second test that

v1  e1  L11
di1
dt  L12

di2
dt  L12

di2
dt  − 2 L21I2 sint

v2  e2  L21
di1
dt  L22

di2
dt  L22

di2
dt  − 2 L22I2 sint

and
V1  L12I2  L12  V1

I2
 20

2601.0  53.05mH
V2  L22I2  L22  V2

I2
 60

2601.0  0.15915H
The coupling factor is

k  L12

L11L22
 53.0510−3

0.141470.15915
 0.35355

Example 1.5: Given the magnetic circuit as shown in Figure 1.6, neglect fringing
effects, leakage flux and reluctances in the magnetic materials. Determine the
self-inductances and mutual inductances.
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Figure1.6 The magnetic circuit for Example 1.5
Solution: The reluctance of each air gap is g 

g
0A where A is the cross-sectional

area of the gap. The fluxes satisfy the following equation
1  2  3

For the left loop, we have
ℱ1  1g  3g  g1  3

that is,
1  3  ℱ1

g

For the right loop, we have
ℱ2  2g − 3g  g2 − 3

that is,
2 − 3  ℱ2

g

Substituting 1  2  3 into 1  3  ℱ1
g

gives

2  23  ℱ1
g

Subtracting 2 − 3  ℱ2
g

from 2  23  ℱ1
g

yields

33  ℱ1
g
− ℱ2

g
 ℱ1−ℱ2

g

that is,
3  ℱ1−ℱ2

3g

Then, it follows from 2 − 3  ℱ2
g

that

2  3  ℱ2
g

 ℱ1−ℱ2
3g

 3ℱ2
3g

 ℱ12ℱ2
3g

 N1i12N2i2
3g

and from 1  2  3, we have
1  2  3  ℱ12ℱ2

3g
 ℱ1−ℱ2

3g
 2ℱ1ℱ2

3g
 2N1i1N2i2

3g

Therefore,
1  N11 

2N1
2

3g
i1  N1N2

3g
i2

2  N22  N1N2
3g

i1 
2N2

2

3g
i2

which implies that
L11 

2N1
2

3g
,L12  L21  N1N2

3g
,L22 

2N2
2

3g

with g 
g
0A .
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Chapter 2. Electromechanical Energy Conversion
An electromechanical system consists of an electrical subsystem (electric circuits such
as windings), a magnetic subsystem (magnetic field in the magnetic cores and
air-gaps), and a mechanical subsystem (mechanically movable parts such as a
plunger in a linear actuator and a rotor in a rotating electrical machine), as shown in
Figure 2.1.

Electromechanical System 

Electrical System Magnetic System

Magnetic Flux Voltage,Current Position,Speed,Acceleration

Mechanical System 

Circuit Equations 
By KVL,KCL 

Force/Torque Equations 
By Newton’s Laws 

Force 
Torque Emf 

Figure 2.1 General concept of electromechanical system modeling

2.1 Force and Torque on a Current Carrying Conductor:
Motor Action (Lecture 4)
The force on a conductor carrying a current i in a uniform magnetic field B is given by
the Lorentz’s force law:

f  i l  B  ilB sin
In a rotating system, the torque about an axis can be calculated by

  r  f
where r is the radius vector from the axis towards the conductor.
Right Hand Rule for Cross Product: When the thumb of the right hand points in the
direction of the first vector and the index finger points in the direction of the second
vector, the cross product, which is perpendicular to the directions of both vectors,
points in the direction normal to the palm of the hand.

2.2 Energy Stored in Magnetic Field
Energy Stored in Magnetic Circuit with a Single Coil
Consider the magnetic circuit with a single winding as shown in Figure 1.1. Neglect
losses. Note that

e  d
dt

and
L  

i
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The electric input power is determined from
p  ie  i d

dt
The energy stored in the field during dt is

dW  pdt  id
With zero initial energy stored in the magnetic field, the energy at time t is

W  0
t pdt  

0

 id  
0

 
L d  1

2L 
2

or
W  0

t pdt  
0

 id  
0

i idLi  1
2 Li2

Example 2.1: (see Example 1.1) A magnetic core is shown in Figure 1.3. Both width
and depth are 3cm and its mean length is 30cm. The length of the air-gap is 0.05cm.
The coil has 500 turns. The relative permeability of the core is assumed to be 70,000.
Neglect fringing effects and assume the flux density of the core is Bc  1.0Wb/m2. The
frequency of the source is 60Hz. Find the inductances of the core and energy stored in
the field.
Solution: It follows from Example 1.1 that

c  lc
r0Ac

 3010−2

70000410−70.030.03
 3789. 4A  t/Wb

a  la
0Aa

 0.0510−2

410−70.030.03
 442100A  t/Wb

  c  a  3789. 4  442100  445890A  t/Wb
The inductance is

L  
i  N

i  N
i
ℱ
  N

i
Ni
  N2

  5002

445890  0.56068H
If c is neglected,

L  N2

a
 5002

442100  0.56548H
The error caused by neglecting the reluctance of the core is only

error  0.56548 − 0.56068  0.0048H.
The flux in the magnetic circuit is

  BcAc  1.0  0.03  0.03  0.0009Wb
The current in the coil is

i  
N  0.0009445890

500  0.8026A
The stored energy is

W  1
2 Li2  1

2  0.56068  0.80262  0.18059J
Energy Stored in Magnetic Circuit with Two Coils
Consider the magnetic circuit with two windings as shown in Figure 1.5. Neglect
losses. Then the electric input energy is equal to the energy stored in the field, that is,

dWs  dW

The electric input power is
p  e1i1  e2i2

and the input energy is
dWe  pdt  e1i1dt  e2i2dt

Note that e1  d1
dt and e2  d2

dt .
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Thus, the stored energy can be expressed as
dW  dWe  i1d1  i2d2

Recall the relations L12  L21 and
1  11  12  L11i1  L12i2

2  21  22  L21i1  L22i2

to get
dW  dWe  i1dL11i1  L12i2  i2dL21i1  L22i2

 L11i1di1  L12i1di2  L21i2di1  L22i2di2

 L11i1di1  L12i1di2  i2di1  L22i2di2

 L11i1di1  L12di1i2  L22i2di2

For the case that the inductances are independent of currents, W can be calculated
by

W  L11i1di1  L12di1i2  L22i2di2  1
2 L11i1

2  L12i1i2  1
2 L22i2

2

On the other hand, solving the equations
1  L11i1  L12i2

2  L21i1  L22i2

for i1 and i2 yields
i1  Γ111  Γ122

i2  Γ211  Γ222

where Γ11  L22/Δ,Γ12  Γ21  −L12/Δ,Γ22  L11/Δ, and Δ  L11L22 − L122.
Then,

dW  Γ111  Γ122d1  Γ211  Γ222d2

 Γ111d1  Γ122d1  Γ211d2  Γ222d2

 Γ111d1  Γ122d1  1d2  Γ222d2

 Γ111d1  Γ12d12  Γ222d2

which means that
W  Γ111d1  Γ12d21  Γ222d2  1

2 Γ11
2 1

2  Γ1212  1
2 Γ222

2

2.3 Force and Torque Calculation from Energy (Lecture 5)
A Singly Excited Linear Actuator
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Figure 2.2
Consider a singly excited linear actuator as shown in Figure 2.2. The winding
resistance is R. A voltage v is applied to the winding, which produces a current i.
Assume that at a certain time instant t, the movable plunger is positioned at x and the
force acting on the plunger is f with the reference direction chosen in the positive
direction of the x axis, as shown in the diagram. After a time interval dt, the plunger
has moved for a distance dx under the action of the force f . The mechanical work
done by the force during this time interval is thus

dWm  fdx
The electrical energy supplied by the electrical source during this time interval is
calculated by

dWe  vidt
The energy dissipated in the winding resistance during this time interval is

dWloss  Ri2dt
Suppose that there is no mechanical losses in the system. According to the principle
of conservation of energy (energy is neither created nor destroyed and it is merely
changed in form), the energy stored in the magnetic field during this time interval dW

must satisfy

dW  dWe − dWloss − dWm  vidt − Ri2dt − fdx  vi − Riidt − fdx  eidt − fdx  d
dt idt − fdx

From the above equation, we know that the energy stored in the magnetic field W is a
function of  and x. Therefore, W can be expressed as

W,x  ∂W,x
∂ d  ∂W,x

∂x dx
By comparing the above two equations, we get

i  ∂W,x
∂ , f  − ∂W,x

∂x
It follows from Section 2.2 that the energy stored in the magnetic field can be
calculated by

W,x  
0

 i,xd
For a magnetically linear system (with a constant permeability or a straight line
magnetization curve such that the inductance of the coil is independent of the
excitation current), the above expression becomes

W,x  1
2

2

Lx

Therefore, the force can be calculated by

12



f  − ∂W,x
∂x  1

2


Lx

2 dLx
dx  1

2 i2 dLx
dx

Example 2.2: Calculate the force acting on the plunger of a linear actuator as shown
in Figure 2.2, where the magnetic core has infinite relative permeability and fringing
effects are negligible.
Solution: The reluctance of the actuator is

g 
2g

0d−xl

The inductance of the actuator is
Lx  N2

g
 0N2l

2g d − x
Therefore, the force acting on the plunger is

f  1
2 i2 dLx

dx  − 0l
4g Ni2

The minus sign of the force indicates that the direction of the force is to reduce the
displacement so as to reduce the reluctance of the air gaps. Since this force is caused
by the variation of magnetic reluctance of the magnetic circuit, it is known as the
reluctance force.
Doubly Excited Rotating Actuator
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+ 
e1 
- 

i1 

N

θ
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e2 
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Figure 2.3
The general principle for force and torque calculation discussed above is equally
applicable to multi-excited systems. Consider a doubly excited rotating actuator as
shown in Figure 2.3. The differential energy functions can be derived as following:

dW  dWe − dWm

where
dWe  i1d1  i2d2

dWm  d
Hence,

dW1,2,  i1d1  i2d2 − d 
∂W1,2,

∂1
d1 

∂W1,2,
∂2

d2 
∂W1,2,

∂ d
which implies that

i1 
∂W1,2,

∂1
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i2 
∂W1,2,

∂2

  − ∂W1,2,
∂

Note that for a linear system
W1,2,  1

2 Γ11
2 1

2  Γ1212  1
2 Γ222

2

Then, we have
  − ∂W1,2,

∂  − 1
2 1

2 dΓ11
d  12

dΓ12
d  1

2 2
2 dΓ22

d

It is useful to express  in terms of L11, L12, and L22. It can be verified that
 

∂Wi1,i2,
∂  1

2 i1
2 dL11

d  i1i2
dL12

d  1
2 i2

2 dL22
d

If there is only one coil in the magnetic circuit, the torque becomes
 

∂Wi,
∂  1

2 i2 dL
d

Example 2.3: Write an expression for the inductance of the magnetic circuit for Figure
2.4 as a function of  and derive an expression for the torque acting on the robot as a
function of the winding current i and the rotor angle . Neglect the effects of fringing
and the reluctance of the steel. The redius of the rotor is r and the length of air gap is
g.

+
v
_

+
e
-

i 

N

θ

τ

Figure 2.4
Solution: The reluctance of the air-gaps is

g 
2g

0hr0.5g

The inductance of the magnetic circuit is
L  N2

g
 0N2hr0.5g

2g 

The energy stored in the magnetic field is
W,  

0

 i,d  
0

 
L d  1

2
2

L

The torque is
  − ∂W,

∂  1
2


L

2 dL
d  1

2 i2 dL
d  1

2
0N2hr0.5g

2g i2

Example 2.4: In the system shown in Figure 2.3, the inductances in henries are given
as

L11  0.0013  cos2
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L12  0.3cos
L22  30  10cos2

Find the torque for currents i1  0.8A and i2  0.01A.
Solution: The torque can be determined by

  1
2 i1

2 dL11
d  i1i2

dL12
d  1

2 i2
2 dL22

d
 1

2 i1
2−0.002sin2  i1i2−0.3sin  1

2 i2
2−20sin2

 −0.001i1
2 sin2 − 0.3i1i2 sin − 10i2

2 sin2
 −0.001  0.82 sin2  0.3  0.8  0.01sin − 10  0.012 sin2
 −0.00164sin2 − 0.0024sin

Example 2.5: The magnetic circuit of Figure 2.6 is excited by a 100-turn coil wound
over the central leg. The depth is 1cm, a1cm and b5cm. Determine the current in
the coil that is necessary to keep the movable part suspended at a distance of 1cm.
Both magnetic circuit and movable part have a cross-sectional area of 1cm2. What is
the energy stored in the systems? The relative permeability and the density of the
magnetic material are 2000 and 7.85g/cm3, respectively.

a
a

b

bb 

a

aa a 

oℜ cℜ        oℜ  

gℜ gℜ        gℜ  

ℑ

Figure2.6 Figure for Example 2.5
Solution: The mean length for each of the outer legs including a part of the movable
part is

lo  1
2 a  b  1

2 a  1
2 a  b  1

2 a  1
2 a  b  1

2 a  3a  3b  3a  b  31  5  18cm
The mean length of the central leg is

lc  1
2 a  b  1

2 a  a  b  1  5  6cm
The length of the air gap is assumed to be x. The reluctance of each par is calculated
as

o  lo
r0A  1810−2

2000410−70.0001
 7. 1620  105A  t/Wb

c  lc
r0A  610−2

2000410−70.0001
 2. 3873  105A  t/Wb

g  lc
r0A  x

410−70.0001
 7. 9577  109x

The applied mmf is ℱ  Ni  100i where i is the required current in the coil.
The total reluctance as viewed from the magnetomotive source is
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  c  g  0.5o  g

 2. 3873  105  7. 9577  109x  0.57. 1620  105  7. 9577  109x
 1. 1937  1010x  5. 9683  105

Hence, the inductance is
Lx  N2

  1002

1.19371010x5.9683105  1
1.1937106x59.683

The magnetic force acting on the movable part is
f  1

2 i2 dLx
dx  − 1

2 i2 1.1937106

59.6831.1937106x2

The negative sign indicates that the force is acting in the upward direction. Therefore,
the magnitude of the force of attraction for x  1cm is

f  − 1
2

1.1937106

59.6831.19371060.012 i2  4. 1471  10−3i2

The length of the movable part is 3a  2b  13cm. The volume of the movable part is
13  1  13cm3, so the mass of the movable part is 13  7.85  102. 05g.
For the movable part to be stationary, the force of gravity must equal to the magnetic
force calculated by

fg  mg  102. 05  10−3  9.8  1. 0001N
that is

4. 1471  10−3i2  1. 0001
Solving this equation for the current gives

i  1.0001
4.147110−3  15. 529A

The inductance of the magnetic circuit at x  1cm is
L1cm  1

1.19371060.0159.683
 8. 3356  10−5H

The energy stored in the magnetic field is
W  1

2 Li2  1
2  8. 3356  10−5  15. 5292  1. 0051  10−2J

Chapter 3 Dynamics of Electromechanical Systems
3.1 Mathematical Model
Figure 3.1 shows the model of a simple electromechanical system, which consists of
three parts: an electrical system, an electromechanical energy-conversion system,
and an mechanical system.

16



 
Electromechanical
energy-conversion

system 
e,λ  v 

R i 

M

k 

B 

x

f

Figure3.1 Model of an electromechanical system
Neglect losses in the electromechanical system. For the electrical system, the
following equation can be obtained from KVL:

v  Ri  e  Ri  d
dt  Ri  dLxi

dt  Ri  Lx di
dt  i dLx

dx
dx
dt

Assume that the spring is normally unstretched at x  0. Then, the following equation
can be obtained from Newton’s law:

f − kx − B dx
dt  M d2x

dt2

where f and Lx depend on the properties of the electromechanical
energy-conversion system.
The differential equations above are called the mathematical model of the
electromechanical system.
Example 3.1: An electromechanical system is shown in Figure 3.2. The voltage
source has a DC voltage Vs. The switch is turned on at t  0. The bar slides along a
pair of frictionless rails in a horizontal plane. The bar has a mass of m. The resistance
of the system is R. Assume all initial conditions are zero. Determine the current it
and the velocity v  dx

dt of the bar.

 

Vs(t) B

x

f

i
R +

e
_

Figure3.2 Example 3.1
Solution: The induced voltage is

et  l v  B  lBvt
From KVL, we obtain

vst  Rit  et  Rit  lBvt
which implies that

it  1
R vst − lB

R vt
The induced force is

f  i l  B  lBit  lB
R vst − l2B2

R vt
From Newton’s law, we have

f  lB
R vst − l2B2

R vt  m dvt
dt
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So the mathematical model for this system is
m dvt

dt  l2B2

R vt  lB
R vst

This equation can be solved by using Laplace transform. Note that vst is a step
signal and its Laplace transform is Vs

s . Taking Laplace transform gives
msVs  l2B2

R Vs  lB
R

Vs
s

Solving it for Vs yields

Vs 
lB
R

Vs
s

ms l2B2
R


lBVs
mR

s s l2B2
mR

Carrying the partial fraction expansion gives
Vs  A1

s  A2

s l2B2
mR

where

A1  s
lBVs
mR

s s l2B2
mR s0


lBVs
mR

l2B2
mR

 Vs
lB

A2  s  l2B2

mR

lBVs
mR

s s l2B2
mR s− l2B2

mR


lBVs
mR

− l2B2
mR

 − Vs
lB

Therefore,

Vs 
Vs
lB
s 

− Vs
lB

s l2B2
mR

Taking inverse Laplace transform gives
vt  Vs

lB −
Vs
lB e− l2B2

mR t

The current in the circuit is given by
it  1

R vst − lB
R vt  Vs

R −
lB
R

Vs
lB −

Vs
lB e− l2B2

mR t  Vs
R e− l2B2

mR t

3.2 Dynamics of DC Generators
A separately excited DC generator delivering power to a static load is shown in Figure
3.3. Assume that the speed of the generator is constant.

Lf

if      Rf + 
 
vf 
 
_ 

ea 

Ra          La     ia + 
 
va 
 
_ 

 
RL 
 
LL 

Figure3.3 Equivalent circuit of a dc generator
During the transient state, the field voltage satisfies the equation

Vf  Rfift  Lf
dift

dt
and the generated voltage is

eat  Keift  Ra  RLiat  La  LL
diat

dt
Taking the Laplace transform gives
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Vfs  RfIfs  LfsIfs − if0
KeIfs  Ra  RLIas  La  LLsIas − ia0

Solving these equations yields
Ifs 

VfsLfif0
LfsRf

Ias 
KeIfsLaLL ia0
LaLL sRaRL


KeVfsLfif0LaLL ia0LfsRf 

LfsRf LaLL sRaRL 

Note that when the system reaches its steady state condition, dift
dt  0 and diat

dt  0,
from which the following equations are obtained for steady state operation:

Vf  Rfif
Keif  Ra  RLia

that is,
if 

Vf

Rf

ia 
Keif
RaRL

Example 3.2: A separately excited DC generator operating at 1500rpm has the
following parameters: Ra  0.2, La  2.5mH, Rf  3, Lf  25mH, and Ke  0.191. If
a DC voltage of 120V is suddenly applied to the field winding under a load with
RL  40 and LL  40mH, determine the field current, armature current, and
generated voltage as a function of time, the approximate time to reach the
steady-state condition, and the steady-state values of the field current and induced
voltage.
Solution: The Laplace transform of the field voltage is Vfs  120

s . The initial
conditions are if0  0 and ia0  0. The field current in s-domain is given by

Ifs 
VfsLfif0

LfsRf


120
s 0.0250
0.025s3  120

s0.025s3 
120

0.025

s s 3
0.025


4800

ss120  A
s  B

s120  40
s  −40

s120

where
A  s 4800

ss120 s0
 4800

0120  40

B  s  120 4800
ss120 s−120

 4800
−120  − 40

Therefore, the field current in time domain is
ift  40 − 40e−120t
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Figure3.4 The field current of the dc generator
The generator speed   2n

60  21500
60  157rad/s. The armature current in s-domain

is

Ias 
KeVfs  Lfif0  La  LLia0Lfs  Rf

Lfs  RfLa  LLs  Ra  RL


0.191  157   120

s  0.025  0  0.0025  0.04  0  0.025s  3
0.025s  30.0025  0.04s  0.2  40

 0.191  157  120
s0.025s  30.0425s  40.2


0.191157120
0.0250.0425

s s  3
0.025 s  40.2

0.0425

 3. 3868  106

ss  120.0s  945. 88

 A
s  B

s  120  C
s  945. 88

 29. 838
s  −34. 174

s  120  4. 3355
s  945. 88

where
A  s 3.3868106

ss120.0s945.88 s0
 3.3868106

01200945.88  29. 838

B  s  120 3.3868106

ss120.0s945.88 s−120
 3.3868106

−120−120945.88  − 34. 174

C  s  945. 88 3.3868106

ss120.0s945.88 s−945.88
 3.3868106

−945.88−945.88120  4. 3355

Therefore, the field current in time domain is
iat  29. 838 − 34. 174e−120t  4. 3355e−945.88t
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Figure3.5 The armature current of the dc generator
The induced voltage is given by

eat  Keift  0.191  157  40 − 40e−120t  1199. 5 − 1199. 5e−120t
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Figure3.6 The induced voltage of the dc generator
For practical purposes, the field current reaches its steady-state value after five time
constant 5 f  5 Lf

Rf
 5 0.025

3  0.042s.
The final values of the field current, armature current, and induced voltage are
if  40A 

Vf

Rf
, ia  29. 838A 

Keif
RaRL

, and ea  1199. 5V  Keif.

3.3 DC Motor Dynamics
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Figure3.7 DC motor dynamics
A DC motor is mainly composed of a stator, rotor, and commutator. The field winding
is placed on the stator, which is also called the stator winding while the armature
winding is mounted on the rotor, which is also referred to as the rotor winding. A
pulsating induced voltage in the armature winding is converted to a DC voltage
through the commutator. The equivalent circuit for a separately excited DC motor,
together with a mechanical load, is shown in Figure 3.7.
For the field circuit, it follows from KVL that

vft  Rfift  Lf
dift

dt
where vf, if, Rf, and Lf are the field voltage, current, resistance, and inductance,
respectively.
For the armature circuit, according to KVL, we obtain

vat  Raiat  La
diat

dt  eat
where va, ia, Ra, and La are the armature voltage, current, resistance, and inductance,
respectively, and ea is the back emf, which is determined by

eat  Keiftt
where Ke is the voltage constant and t is the angular speed of the motor.
For the mechanical load, it follows from Newton’s law that

dt − Lt − Dt  J dt
dt

where D and J are the viscous friction coefficient and the moment of inertia of the
rotating members, respectively, L is the load torque and d is the developed torque of
the DC motor, which is determined by

dt  Kiftiat
where K is the torque constant, which is the same as the voltage constant Ke.
Substituting for ea and d in the three differential equations and solving them for the
derivatives, it follows that

dift
dt  − Rf

Lf
ift  1

Lf
vft
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diat
dt  − Ra

La
iat − Ke

La
iftt  1

La
vat

dt
dt  Ke

J iftiat − 1
J Lt − D

J t
which is a set of nonlinear differential equations. In these equations, both vft and
vat can be adjusted to control the speed t. When vft is kept constant, that is, ift
is constant, the motor speed can be controlled by adjusting the armature voltage vat
and the motor is called the armature-controlled DC motor. On the other hand, when
vat is kept constant, the motor speed can be controlled by adjusting the field voltage
vft and the motor is called the field-controlled DC motor.
After the motor reaches the steady-state condition, ift, iat, and t remain
constant, which implies that

dift
dt  0, diat

dt  0, dt
dt  0

Then, the following equations are obtained for the motor under steady-state condition.
vf  Rfif
va  Raia  ea
d − L − D  0
ea  Keif
d  Keifia

or
0  −Rfif  vf
0  −Raia − Keif  va
0  Keifia − L − D

from which one can determine the quantities if, ia, and  under steady-state
condition.
Example 3.3: A 240V, 12hp, separately excited DC motor has the following parameters
Ra  0.28, La  2.81mH, Rf  320, Lf  2H, Ke  1.03. J  0.087kg  m, and
D  0.02N  m  s. It is operating on a load of 15N  m in the linear region of its
magnetization characteristic. Determine the speed, field current, and armature current
under steady-state condition.
Solution: The equations for the motor under steady-state condition are

0  −Rfif  vf
0  −Raia − Keif  va
0  Keifia − L − D

Solving the first equation for ift gives
if 

vf
Rf

 240
320  0.75A

Solving the second equation for iat yields
ia  va

Ra
− Keif

Ra


Substituting this into the third equation produces
0  Keif va

Ra
− Keif

Ra
 − L − D

that is,
0  Keifva − Ke

2if
2 − LRa − DRa
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Solving this for , we have
  Keifva−LRa

Ke
2if

2DRa
 1.030.75240−150.28

1.0320.7520.020.28
 300. 82rad/s

Therefore, the armature current is
ia  va

Ra
− Keif

Ra
  240

0.28 −
1.030.75

0.28  300. 82  27. 202A

3.4 Armature-Controlled DC Motors
For armature controlled DC motors, the field voltage is kept constant at Vf, so the field
current is constant too, which implies that dift

dt  0 and ift  If 
Vf

Rf
. The dynamic

model for an armature controlled DC motor becomes
diat

dt  − Ra
La

iat − Ke
La

Ift  1
La

vat
dt

dt  Ke
J Ifiat − 1

J Lt − D
J t

which is in the state-space form with state variables iat and t.
Taking the Laplace transform, together with initial conditions ia0 and 0, gives

sIas − ia0  − Ra
La

Ias − Ke
La

Ifs  1
La

Vas

ss − 0  Ke
J IfIas − 1

J Ls − D
J s

or
LasIas − Laia0  −RaIas − KeIfs  Vas

Jss − J0  KeIfIas − Ls − Ds

Solving the first equation for Ias yields
Ias 

VasLaia0−KeIfs
LasRa

Substituting into the second equation gives
Jss − J0  KeIf

VasLaia0−KeIfs
LasRa

− Ls − Ds
that is,

Js  Ds  KeIfVasLaia0
LasRa

− KeIf 
2s

LasRa
 J0 − Ls

Solving this for s produces
s  KeIfVasLaia0LasRa J0−Ls

JsDLasRa KeIf 
2

Then, the armature current is given by
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Ias 
Vas  Laia0 − KeIfs

Las  Ra


Vas  Laia0 − KeIf

KeIfVasLaia0LasRa J0−Ls

JsDLasRa KeIf 
2

Las  Ra



VasLaia0 JsDLasRa KeIf 
2

JsDLasRa KeIf 
2 − KeIf

KeIfVasLaia0LasRa J0−Ls

JsDLasRa KeIf 
2

Las  Ra



Vas  Laia0 Js  DLas  Ra  KeIf
2

−KeIfKeIfVas  Laia0  Las  RaJ0 − Ls

Las  Ra Js  DLas  Ra  KeIf
2



Vas  Laia0Js  DLas  Ra  KeIf
2Vas  Laia0

−KeIf
2Vas  Laia0 − KeIfLas  RaJ0 − Ls

Las  Ra Js  DLas  Ra  KeIf
2


Vas  Laia0Js  DLas  Ra − KeIfLas  RaJ0 − Ls

Las  Ra Js  DLas  Ra  KeIf
2


Vas  Laia0Js  D − KeIfJ0 − Ls

Js  DLas  Ra  KeIf
2

Example 3.4: (see Example 3.3) A 240V, 12hp, separately excited DC motor has the
following parameters Ra  0.28, La  2.81mH, Rf  320, Lf  2H, Ke  1.03.
J  0.087kg  m, and D  0.02N  m  s. Determine its speed and armature current as a
function of time when it is suddenly connected to a 240V DC source at no load
condition.
Solution: Prior to the application of armature voltage the motor speed and armature
current are zero. That is, at t  0, ia0  0 and 0  0. In addition, the load torque is
zero because the motor operates at no load. That is, Lt  0. The field current is

If 
Vf

Rf
 240

320  0.75A

Note that the armature voltage vat is a step signal with amplitude of 240V, so its
Laplace transform is Vas  240

s .
Therefore, we have
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s  KeIfVas  Laia0  Las  RaJ0 − Ls
Js  DLas  Ra  KeIf

2


1.03  0.75  240

s

0.087s  0.020.00281s  0.28  1.03  0.752

 185. 4
s2. 4447  10−4s2  2. 4416  10−2s  0.60236


185.4

2.444710−4

s s2  2.441610−2

2.444710−4 s  0.60236
2.444710−4

 7. 5838  105

ss2  99. 873s  2463. 9

 7. 5838  105

ss  44. 482s  55. 391
In order to determine the inverse Laplace transform, we expand s into partial
fractions as

s  A
s  B

s44.482  C
s55.391

where A, B, and C can now be determined by the root-substitution method. Thus,
A  s 7.5838105

ss44.482s55.391 s0
 7.5838105

044.482055.391  307. 80

B  s  44. 482 7.5838105

ss44.482s55.391 s−44.482
 7.5838105

−44.482−44.48255.391  − 1562. 9

C  s  55. 391 7.5838105

ss44.482s55.391 s−55.391
 7.5838105

−55.391−55.39144.482  1255. 1

Finally, we can take the inverse Laplace transform of
s  307.80

s  −1562.9
s44.482  1255.1

s55.391

and get the angular velocity as
t  307. 80 − 1562. 9e−44.482t  1255. 1e−55.391t

26



0.0 0.1 0.2 0.3 0.4 0.5
0

100

200

300

t (s)

w (rad/s)

Figure3.8 The motor speed
The Laplace transform of the armature current is

Ias 
Vas  Laia0Js  D − KeIfJ0 − Ls

Js  DLas  Ra  KeIf
2


240
s 0.087s  0.02

0.087s  0.020.00281s  0.28  1.03  0.752


2400.087s  0.02

s2. 4447  10−4s2  2. 4416  10−2s  0.60236


2400.087

2.444710−4 s  2400.02
2.444710−4

s s2  2.441610−2

2.444710−4 s  0.60236
2.444710−4

 85409s  19634
ss2  99. 873s  2463. 9

 85409s  19634
ss  44. 482s  55. 391

In terms of its partial fraction expansion, Ias can be written as
ias  A

s  B
s44.482  C

s55.391  7.9687
s  7788.8

s44.482  −7796.7
s55.391

where
A  s 85409s19634

ss44.482s55.391 s0
 85409019634

044.482055.391  7. 9687

B  s  44. 482 85409s19634
ss44.482s55.391 s−44.482

 85409−44.48219634
−44.482−44.48255.391  7788. 8

C  s  55. 391 85409s19634
ss44.482s55.391 s−55.391

 85409−55.39119634
−55.391−55.39144.482  − 7796. 7

Finally, we obtain the armature current as
iat  7. 9687  7788. 8e−44.482t − 7796. 7e−55.391t
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Figure3.9 The motor armature current
The rated current is Iarating  12746

240  37. 3A. The starting current is way too high so
that the motor will be burnt.
Note that the mechanical time constant is m  J

D  0.087
0.02  4. 35s and the electrical

time constant is
e  La

Ra
 0.00281

0.28  1. 0036  10−2s.
Example 3.5: (See Example 3.3) A 240V, 12hp, separately excited DC motor has the
following parameters Ra  0.28, La  2.81mH, Rf  320, Lf  2H, Ke  1.03.
J  0.087kg  m, and D  0.02N  m  s. Determine its speed and armature current as a
function of time when it is suddenly connected to a 30V DC source at a load of 15N  m.
Solution: Prior to the application of armature voltage the motor speed and armature
current are zero. That is, at t  0, ia0  0 and 0  0. In addition, the load torque is
15N  m, that is, Lt  15. The field current is

If 
Vf

Rf
 240

320  0.75A

Note that Vas  30
s and Ls  15

s .
Therefore, we have
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s  KeIfVas  Laia0  Las  RaJ0 − Ls
Js  DLas  Ra  KeIf

2


1.03  0.75  30

s  0.00281s  0.28− 15
s 

0.087s  0.020.00281s  0.28  1.03  0.752


1.03  0.75  30  0.00281s  0.28−15

s2. 4447  10−4s2  2. 4416  10−2s  0.60236

 18. 975 − 0.04215s
s2. 4447  10−4s2  2. 4416  10−2s  0.60236


18.975

2.444710−4 − 0.04215
2.444710−4 s

s s2  2.441610−2

2.444710−4 s  0.60236
2.444710−4

 77617 − 172. 41s
ss2  99. 873s  2463. 9

 77617 − 172. 41s
ss  44. 482s  55. 391

In order to determine the inverse Laplace transform, we expand s into partial
fractions as

s  A
s  B

s44.482  C
s55.391

where A, B, and C can now be determined by the root-substitution method. Thus,
A  s 77617−172.41s

ss44.482s55.391 s0
 77617−172.410

044.482055.391  31. 502

B  s  44. 482 77617−172.41s
ss44.482s55.391 s−44.482

 77617−172.41−44.482
−44.482−44.48255.391  − 175. 76

C  s  55. 391 77617−172.41s
ss44.482s55.391 s−55.391

 77617−172.41−55.391
−55.39144.482−55.391  144. 25

Finally, we can take the inverse Laplace transform of
s  31.502

s  −175.76
s44.482  144.25

s55.391

and get the angular velocity as
t  31. 502 − 175. 76e−44.482t  144. 25e−55.391t
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Figure3.10 The motor speed
The Laplace transform of the armature current is

Ias 
Vas  Laia0Js  D − KeIfJ0 − Ls

Js  DLas  Ra  KeIf
2


30
s 0.087s  0.02 − 1.03  0.75− 15

s 

0.087s  0.020.00281s  0.28  1.03  0.752


300.087s  0.02 − 1.03  0.75−15

s2. 4447  10−4s2  2. 4416  10−2s  0.60236

 2. 61s  12. 188
s2. 4447  10−4s2  2. 4416  10−2s  0.60236


2.61

2.444710−4 s  12.188
2.444710−4

s s2  2.441610−2

2.444710−4 s  0.60236
2.444710−4

 10676s  49855
ss2  99. 873s  2463. 9

 10676s  49855
ss  44. 482s  55. 391

In terms of its partial fraction expansion, Ias can be written as
s  A

s  B
s44.482  C

s55.391  20.234
s  875.9

s44.482  −896.14
s55.391

where
A  s 10676s49855

ss44.482s55.391 s0
 10676049855

044.482055.391  20. 234

B  s  44. 482 10676s49855
ss44.482s55.391 s−44.482

 10676−44.48249855
−44.482−44.48255.391  875. 9

C  s  55. 391 10676s49855
ss44.482s55.391 s−55.391

 10676−55.39149855
−55.39144.482−55.391  − 896. 14

Finally, we obtain the armature current as
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iat  20. 234  875. 9e−44.482t − 896. 14e−55.391t
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Figure3.11 The motor armature current

3.5 Field-Controlled DC Motors
In an armature-controlled DC motor, the field current is kept at a constant level and
the armature voltage is adjusted to vary the speed below its rated speed. In a
field-controlled DC motor, however, we will change the field current in order to obtain a
motor speed higher than its rated speed.
The mathematical model for a field-controlled DC motor is given below.

dift
dt  − Rf

Lf
ift  1

Lf
vft

diat
dt  − Ra

La
iat − Ke

La
iftt  Va

La
dt

dt  Ke
J iftiat − 1

J Lt − D
J t

It is clear that these equations are nonlinear because of the products of the state
variables in these equations. As a result, the Laplace transform approach would not
be appropriate to get closed-form solutions for ift, iat and t. However, a
simplifying assumption can be made to linearize these equations.
In an electric motor, the time constant of the electric circuit is much smaller than the
time constant of the mechanical parts. Therefore, it can be considered that the time
constant of the field circuit is much smaller than the mechanical time constant of the
motor. The field current reaches its steady-state before the armature responds to the
changes in the field current. Therefore, we have

dift
dt  − Rf

Lf
ift  1

Lf
vft

diat
dt  − Ra

La
iat − Ke

La
Ift  Va

La
dt

dt  Ke
J Ifiat − 1

J Lt − D
J t

Taking the Laplace transform gives

31



sIfs − if0  −
Rf
Lf

Ifs  1
Lf

Vfs

sIas − ia0  − Ra
La

Ias − Ke
La

Ifs  1
La

Vas

ss − 0  Ke
J IfIas − 1

J Ls − D
J s

or
LfsIfs − Lfif0  −RfIfs  Vfs

LasIas − Laia0  −RaIas − KeIfs  Vas
Jss − J0  KeIfIas − Ls − Ds

Solving these equations yields
Ifs 

VfsLfif0
LfsRf

s  KeIfVasLaia0LasRa J0−Ls

JsDLasRa KeIf 
2

Ias 
VasLaia0JsD−KeIfJ0−Ls

JsDLasRa KeIf 
2

Example 3.6: (See Example 3.3) A 240V, 12hp, separately excited DC motor has the
following parameters Ra  0.28, La  2.81mH, Rf  320, Lf  2H, Ke  1.03.
J  0.087kg  m, and D  0.02N  m  s. It is operating on a load of 15N  m in the linear
region of its magnetization characteristic. Determine its speed, field current, and
armature current as a function of time when the field voltage is suddenly reduced from
240V to 192V at t  0.
Solution: Since the motor has already been operating at steady state on a load of
L  15N  m before the field voltage is suddenly changed, we have to evaluate the
initial conditions on ift, iat and t from the equations for the steady-state
operation, which is done in Example 3.2 and the initial values are

if0  0.75A,0  300. 82rad/s, ia0  27. 202A
First, we will determine the field current as follows:

Ifs 
VfsLfif0

LfsRf


VfsLfif0
LfsRf


192
s 20.75
2s320  960.75s

ss160  A
s  B

s160  0.6
s  0.15

s160

where
A  s 960.75s

ss160 s0
 960.750

0160  0.6

B  s 960.75s
ss160 s−160

 960.75−160
−160  0.15

Taking the inverse Laplace transform produces
ift  0.6  0.15e−160t
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Figure3.12 The motor field current
which has a steady state value If  0.6A, which is the same as Vf

Rf
 192

320  0.6.

For the motor speed, we have

s  KeIfVas  Laia0  Las  RaJ0 − Ls
Js  DLas  Ra  KeIf

2


1.03  0.6   240

s  0.00281  27.2  0.00281s  0.280.087  300.79 − 15
s 

0.087s  0.020.00281s  0.28  1.03  0.62


1.03  0.6  240  0.00281  27.2s  0.00281s  0.280.087  300.79s − 15

s2. 4447  10−4s2  2. 4416  10−2s  0.38752

 7. 3534  10−2s2  7. 3323s  144. 12
s2. 4447  10−4s2  2. 4416  10−2s  0.38752


7.353410−2

2.444710−4 s2  7.3323
2.444710−4 s  144.12

2.444710−4

s s2  2.441610−2

2.444710−4 s  0.38752
2.444710−4

 300. 79s2  29993. s  5. 8952  105

ss2  99. 873s  1585. 1

 300. 79s2  29993. s  5. 8952  105

ss  19. 794s  80. 079

 A
s  B

s  19. 794  C
s  80. 079

 371. 92
s  −95. 274

s  19. 794  24. 147
s  80. 079

where A, B, and C are determined by
A  s 300.79s229993s5.8952105

ss19.794s80.079 s0
 300.79022999305.8952105

019.794080.079  371. 92
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B  s  19. 794 300.79s229993s5.8952105

ss19.794s80.079 s−19.794
 300.79−19.794229993−19.7945.8952105

−19.794−19.79480.079 

− 95. 274

C  s  80. 079 300.79s229993s5.8952105

ss19.794s80.079 s−80.079
 300.79−80.079229993−80.0795.8952105

−80.079−80.07919.794 

24. 147
Finally, we can take the inverse Laplace transform to get the angular velocity as

t  371. 92 − 95. 274e−19.794t  24. 147e−80.079t
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Figure3.13 The motor speed
The steady-state speed is 371. 92rad/s, which is higher than the steady-state speed
300rad/s (see Example 3.3) corresponding to the rated field current 0.75A. This
confirms that the speed is increased with a lower field current.
The Laplace transform of the armature current is
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Ias 
Vas  Laia0Js  D − KeIfJ0 − Ls

Js  DLas  Ra  KeIf
2


 240

s  0.00281  27.20.087s  0.02 − 1.03  0.60.087  300.79 − 15
s 

0.087s  0.020.00281s  0.28  1.03  0.62

 240  0.00281  27.2s0.087s  0.02 − 1.03  0.60.087  300.79s − 15
s2. 4447  10−4s2  2. 4416  10−2s  0.38752

 6. 6496  10−3s2  4. 7093s  14. 07
s2. 4447  10−4s2  2. 4416  10−2s  0.38752


6.649610−3

2.444710−4 s2  4.7093
2.444710−4 s  14.07

2.444710−4

s s2  2.441610−2

2.444710−4 s  0.38752
2.444710−4

 27. 2s2  19263s  57553
ss2  99. 873s  1585. 1

 27. 2s2  19263s  57553
ss  19. 794s  80. 079

 A
s  B

s  19. 794  C
s  80. 079

 36. 309
s  262. 37

s  19. 794  − 271. 48
s  80. 079

where
A  s 27.2s219263s57553

ss19.794s80.079 s0
 27.20219263057553

019.794080.079  36. 309

B  s  19. 794 27.2s219263s57553
ss19.794s80.079 s−19.794

 27.2−19.794219263−19.79457553
−19.794−19.79480.079  262. 37

C  s  80. 079 27.2s219263s57553
ss19.794s80.079 s−80.079

 27.2−80.079219263−80.07957553
−80.079−80.07919.794  − 271.

48
Finally, we obtain the armature current as

iat  36. 309  262. 37e−19.794t − 271. 48e−80.079t
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Figure3.14 The motor armature current
It is clear that the field current reaches its steady state at about 30ms whereas it takes
about 300ms for the speed and thereby the armature current to do so. This is
consistent with our assumption that the mechanical response is much slower than the
changes in the field current.
It is important to note that the armature current reaches its peak at 160A, which is well
over its rated value. This is mainly caused by the large mechanical time constant of
the motor that does not allow a rapid change in the back emf of the motor. Therefore,
it is recommended that the field current be gradually varied so that high currents will
not take place in the armature circuit.

3.6 Voltage Control of DC Generators
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3.7 Speed Control of DC Motors
Formula Sheet for the Midterm Test:
ℱ  Ni
B  H,  BA
0  4  10−7H/m
  ℱ



  l
A

  N
e  d

dt

L  
i  N2



W,x  1
2L 

2

Wi,x  1
2 Li2

f  − ∂W,x
∂x  1

2 i2 dLx
dx

f  ∂Wi,x
∂x  1

2 i2 dLx
dx

1  11  12  L11i1  L12i2

2  21  22  L21i1  L22i2

e1  d1
dt

e2  d2
dt

W1,2,  1
2 Γ11

2 1
2  Γ1212  1

2 Γ222
2

Wi1, i2,  1
2 L11i1

2  L12i1i2  1
2 L22i2

2

  − ∂W1,2,
∂  1

2 i1
2 dL11

d  i1i2
dL12

d  1
2 i2

2 dL22
d

 
∂Wi1,i2,

∂  1
2 i1

2 dL11
d  i1i2

dL12
d  1

2 i2
2 dL22

d

e  l v  B
f  i l  B
eat  Keiftt
dt  Kiftiat
s  KeIfVasLaia0LasRa J0−Ls

JsDLasRa KeIf 
2

Ias 
VasLaia0JsD−KeIfJ0−Ls

JsDLasRa KeIf 
2

Ifs 
VfsLfif0

LfsRf

ZY  1
3 Z

Van 
Vab

3
∠ − 30∘


I A′  3


I A∠ − 30∘
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-Y connection: EA1  aEA2∠ − 30∘,

I A2

,
 1

a

I A2∠ − 30∘

Y- connection: EA1  aEA2∠30∘,

I A2

,
 1

a

I A2∠30∘

s 
4f
P

m  1 − ss

Ea
,
 Ea − j


I dXd − Xq(synchronous generator)

Ea
,
 Ea  j


I dXd − Xq(synchronous motor)

fr  sf

Pd  3I2
2 1−sR2

s  3V1
2 1−sR2

s

R1R2
1−sR2

s
2
X1X2 2

smax,p  R2

R2 R1R2 2X1X2 2

Pd,max  3
2

V1
2

R1R2 R1R2 2X1X2 2

d 
3V1

2R2

ss R1
R2
s

2
X1X2 2

smax,  R2

R1
2X1X2 2

d,max 
3V1

2

2s R1 R1
2X1X2 2

Zf  Rf  jXf  0.5 jXmR2/sjX2 
R2/sjX2Xm 

 0.5 Xm
2 R2/s

R2/s2X2Xm 2  j0.5 Xm R2/s2X2X2Xm 

R2/s2X2Xm 2

Zb  Rb  jXb  0.5 jXmR2/2−sjX2 
R2/2−sjX2Xm 

 0.5 Xm
2 R2/2−s

R2/2−s2X2Xm 2  j0.5 Xm R2/2−s2X2X2Xm 

R2/2−s2X2Xm 2

Pagf  I1
2Rf  0.5I2f

2 R2
s

Pagb  I1
2Rb  0.5I2b

2 R2
2−s

Pdf  Pagf − Prcuf  1 − sPagf

Pdb  Pagb − Prcub  −1 − sPagb

Pd  1 − sPag

Pag  Pagf − Pagb

Pd  1 − sPag  dm  1 − sds

d 
Pagf
s −

Pagb
s   fd − bd

eat  Kaat
dt  Kaaiat
m  2

P e

nm  1
NP npulses
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