
Chapter 1. Magnetic Circuit

1.1 Magnetic Circuit
Consider a simple magnetic structure as shown in Figure 1.1. The following assumptions
are made for symplifying magnetic circuit analysis:
(A1) The magnetic flux is restricted to flow through the magnetic materials with no leakage;
(A2) The magnetic flux density is uniform within the magnetic materials.

Figure 1.1 Magnetic circuit
If the coil has N turns and carries a current i, the magnetomotive force (mmf) in A � t,
produced by the current i, is

� � Ni
Ampere’s law states that the line integral of the tangential component of the magnetic field
intensity H (in A/m) around a closed path C is equal to the total current passing through the
surface enclosed by the path, that is,

� � �H�d l � �Hcos�dl

where l is the length vector whose direction is chosen in a way so that the angle between H
and d l is the smallest and � is the angle between the vectors H and d l . The direction of H
is detrmined by the right-hand rule:
The right-hand rule 1: Imagine a current-carrying conductor held in the right hand with the
thumb pointing in the direction of current flow, the fingers then point in the direction of the
magnetic field created by that current.
The right-hand rule 2: If the coil is grasped in the right hand with the fingers pointing in the
direction of the current, the thumb will point in the direction of the magnetic field.
Due to (A1), the mean path can be chosen to calculate the magnetic field intensity H. Note
that � � 0. Thus,

� � Hl
where l is the mean legnth of the magnetic core.
The magnetic field intensity H is related to the magnetic flux density B (in Wb/m2) by

B � �H
where � � �r�0 is called the magnetic permeability (in H/m) with �r the ralative permeability
and �0 � 4� � 10�7H/m the permeability of the air or free space.
The flux in the core is determined by

� � BA
where A represents the cross-sectional area of the magnetic core.
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Therefore, � � Hl can be rewritten as

� � Hl � B
� l �

�
A
� l � l

�A � � ��

where � � l
�A is defined as the reluctance of the magnetic circuit.

Comparing the expression � � �� with Ohm’s law V � RI, we find that � is analogous to R,
� to I, and � to V. This analogy enables us to represent the magnetic core in terms of an
equivalent magnetic circuit as shown in Figure 1.1. Like the voltage source in the electric
circuit, the mmf in the magnetic circuit has a polarity. The positive end of the mmf source is
the end from which the flux exits and the negative end is the end at which the flux re-enters.
Reluctances in a megnetic circuit obey the same rules as resistances in an electric circuit.
The equivalent reluctance of a number of reluctances in series is just the sum of the
individual reluctances:

�eq � �1 � �2 � �
Similarly, reluctances in parallel combine according to the equation

1
�eq

� 1
�1

� 1
�2

� �

Example 1.1:
A magnetic core is shown in Figure 1.2. Its depth is 3cm and its mean length is 30cm. The
length of the air-gap is 0.05cm. The coil has 500 turns. The relative permeability of the core
is assumed to be 70,000. Neglect fringing effects and assume the flux density of the core is
Bc � 1. 0Wb/m2. Find the reluctances of the core and air-gap, flux in the core, and the
current required.

Figure 1.2 Magnetic circuit
Solution: The reluctance of the core is calculated by

�c � lc
�r�0Ac

� 30�10�2

70000�4��10�7�0.03�0.03
� 3789. 4A � t/Wb

The reluctance of the air-gap is
�a � la

�0Aa
� 0.05�10�2

4��10�7�0.03�0.03
� 4 421 00A � t/Wb

The total reluctance in the magnetic circuit is given by
� � �c � �a � 3789. 4 � 4 421 00 � 4 458 90A � t/Wb

The flux in the magnetic circuit is
� � BcAc � 1. 0 � 0. 03 � 0. 03 � 0. 000 9Wb

The current in the coil is
i � ��

N � 0.000 9�4 458 90
500 � 0. 802 6A

Example 1.2: Consider the magnetic circuit as shown in Figure 1.3. Determine the flux
through various magnetic paths.

2



Figure 1.3 Magnetic circuit
Solution: The reluctance in the center leg is �center � �3 � �4

The total reluctance seen from the coil side is
�total � �1 � ��3 � �4���2 � �1 � ��3��4 ��2

�3��4��2
� �1��3��4��2 ����3��4 ��2

�3��4��2

The flux in the left leg is
�1 � �

� total
� Ni

�1��3��4��2 ����3��4 ��2
�3��4��2

The flux in the center leg is
�3 � �2

�center
� �1��center��2 �

�center
� �1

�center

�center�2
�center��2 � �1�2

�3��4��2

The flux in the right leg is
�2 � �2

�2
� �1��center��2 �

�2
� �1

�2

�center�2
�center��2

� �1��3��4 �
�3��4��2

where
�1 � la

�r�0A ,�2 � lb
�r�0A ,�3 � 2lc

�r�0A ,�4 � lg

�0A

1.2 AC Excitation, Eddy Current Loss, and Hyteresis Loss
Induced Voltage
Consider the magnetic circuit as shown in Figure 1.1, with the cross-sectional area A and
the mean length l. Assume that the flux is a sinusoidal function of time, that is,

��t� � �max sin��t� � ABmax sin��t�
where �max and Bmax are the amplitudes of the flux and the flux density, respectively, and
� � 2�f.
It follows from Faraday’s law that the induced voltage is given by

e�t� � N d�
dt � N��max cos��t� � Emax cos��t�

where Emax � N��max � �NABmax � 2�fNABmax.
In steady-state operation, we are interested in rms values of voltages and currents. The rms
value of the induced voltage is given by

E � 2�
2

fNABmax � 2 �fNABmax

Excitation Current
To produce a magnetic flux in a magnetic core, a current is required, which is referred to as
the excitation current, denoted i��t�. Due to the nonlinearity of the B-H curve and the
hysteresis property of the magnetic materials, i��t� � Hl

N is not a sinusoidal function.
Eddy Current Loss
A time-varying flux induces an emf in the magnetic core in accordance with Faraday’s law.
Since the magnetic materials are good conductors, the induced emf produces a current
along a closed path inside the magnetic core. Such a current is called eddy current because
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its swirling pattern resembles the eddy current of water.
As a consequence of this eddy current, energy is converted into heat in the resistance of
the path, which gives rise to the power loss. Such a loss is referred to as the eddy current
loss, which is determined by

Pe � kef2�2Bmax
2 V

where Pe is the eddy-current loss in watts (W), ke is a constant that depends on the
conductivity of the magnetic material, f is the frequency in hertz �Hz�, � is the lamination
thickness in meters �m�, Bmax is the maximum flux density in teslas �T�, and V is the volume
of the magnetic material in cubic meters �m3�.
To reduce the effects of eddy currents, magnetic structures are usually built of thin sheets
of laminations of the magnetic material, insulated from each other by an oxide layer or by a
thin coat of insulation materials.
Hysteresis Loss
Assume that the flux in the core is initially zero. An ac current is applied to the winding. As
the current increases for the first time, the flux in the core traces out path ab as shown in
Figure 1.4. However, when the current decreases, the flux traces out a different path bcd,
and later when the current increases again, the flux traces out path deb. This failure to
retrace flux paths is called hysteresis. The path bcdeb is called a hysteresis loop.
Each time the magnetic materail is made to traverse its hysteresis loop, it produces a power
loss, which is commonly referred to as the hysteresis loss. The hysteresis loss can be
determined by

Ph � khfBmax
n V

where Ph is the hysteresis loss in watts (W), kh is a constant that depends on the magnetic
material, and n is the Steinmetz exponent.
Core Loss
It is a common practice to lump the eddy current loss and hysteresis loss together to define
the core loss

Pcore � Pe � Ph � kef2�2Bmax
2 V � khfBmax

n V � Kef2Bmax
2 � KhfBmax

n

where Ke � ke�2V and Kh � khV.

1.3 Flux Linkage, Inductance, and Mutual Inductance
Inductance
Consider the magnetic circuit as shown in Figure 1.1. Faraday’s law states that if a flux �
passes through a winding of N turns, a voltage will be induced in the winding and the
induced voltage e is directly proportional to the rate of change in the flux linkages � � N�
with respect to time, that is,

e � � d�
dt � �N d�

dt

where the minus sign means that the polarity of the induced voltage is such that if the
winding ends were short-circuited, it would produce current that would cause a flux
opposing the original flux change.
The self inductance or inductance (in H) of the winding is defined as the ratio of the flux
linkages and the current, that is,

L � �
i � N �

i

If L is constant, then
e � � d�

dt � � d�Li�
dt � �L di

dt

L depends on the physical dimensions of the magnetic circuit and the permeability of the
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magnetic materials. For the magnetic circuit as shown in Figure 1.1, L can be determined
as follows:

L � �
i � N �

i � N
�
�

i � N N
� � N2

�

Example 1.3: The magnetic circuit of Figure 1.45 consists of an N-turn winding on a
magnetic core of infinite permeability with two parallel air gaps of lengths g1 and g2 and
areas A1 and A2, respectively. Find the inductance of the winding and the flux density B1 in
gap 1 when the winding is carrying a current i. Neglect fringing effects at the air gaps.
Solution: The equivalent circuit shows that the total reluctance is equal to the parallel
combination of the two gap reluctances �1 � g1

�0A1
and �2 � g2

�0A2
. Thus

� � N� � N �
� � N Ni

�1�2
�1��2

� N2i��1��2 �
�1�2

and

L � �
i � N2��1��2 �

�1�2
�

N2 g1
�0A1

�
g2

�0A2
g1

�0A1

g2
�0A2

� �0N2 A1
g1

� A2
g2

The flux in gap 1 is
�1 � Ni

�1
� �0A1Ni

g1

and thus
B1 � �1

A1
� �0Ni

g1

Mutual Inductance
Consider the magnetic circuit as shown in Figure 1.5. If a current i1 is applied to coil-1 while
a current i2 to coil-2, then the total mmf is

Figure 1.5 Magnetic circuit
� � N1i1 � N2i2

The reluctance of the core is
� � l

�A

The flux in the core is given by
� � �

� � N1
� i1 �

N2
� i2 � N1

�A
l i1 � N2

�A
l i2

The flux linkage of coil-1 is
�1 � N1� � N1

2 �A
l i1 � N1N2

�A
l i2

which can be written
�1 � L11i1 � L12i2 � �11 � �12

where
L11 � �11

i1
� N1

2 �A
l

5



is the self-inductance of coil 1 and �11 � L11i1 is the flux linkage of coil-1 due to its own
current i1. The mutual inductance from coil-2 to coil-1 is

L12 � �12
i2

� N1N2
�A
l

and �12 � L12i2 is the flux linkage of coil-1 due to the current i2.
Similarly, the flux linkage of coil-2 is

�2 � N2� � N1N2
�A
l i1 � N2

2 �A
l i2 � L21i1 � L22i2 � �21 � �22

with L21 � �21
i1

� L12 � N1N2
�A
l , L22 � �22

i2
� N2

2 �A
l , �21 � L21i2, and �22 � L22i2.

Now suppose �12 � k1�11 and �21 � k2�22. Then it is easily checked that
L12L21 � �12

i2

�21
i1

� k1�11
i2

k2�22
i1

� k1k2L11L22

In a linear system, L12 � L21 � M. Therefore,
M � k L11L22

where k � k1k2 is known as the coefficient of coupling or the coupling factor between the
two coils.
If the inductances are constant, then the induced voltages can be calculated by

e1 � d�1
dt � d�L11i1�L12i2 �

dt � L11
di1
dt � L12

di2
dt

e2 � d�2
dt � d�L21i1�L22i2 �

dt � L21
di1
dt � L22

di2
dt

Example 1.4: A magnetic circuit with two windings was tested with an ac source at 60Hz
and the following data were recorded.

Test Coil Condition RMS Voltage (V) RMS Current (A)

1 Coil-1 connected to a voltage source 80 1.5

Coil-2 open circuit 30 0

2 Coil-2 connected to a voltage source 60 1.0

Coil-1 open circuit 20 0

Assume the magnetic circuit operated in the linear region and neglect the hysteresis effects.
Neglect the winding resistances. Determine the self inductance, mutual inductance, and
coupling factor.
Solution: The ac currents can be expressed by i j�t� � 2 Ij cos��t� with � � 2�f and j � 1, 2.
For the first test, the following equations are obtained:

v1 � L11
di1
dt � L12

di2
dt � L11

di1
dt � � 2 �L11I1 sin��t�

v2 � L21
di1
dt � L22

di2
dt � L21

di1
dt � � 2 �L21I1 sin��t�

which implies that the rms values of v1 and v2 are equal to �L11I1 and �L21I1, that is,
V1 � �L11I1 � L11 � V1

�I1
� 80

2��60�1.5 � 0. 141 47H

V2 � �L21I1 � L21 � V2
�I1

� 30
2��60�1.5 � 53. 05 mH

Similarly, it follows from the second test that
v1 � L11

di1
dt � L12

di2
dt � L12

di2
dt � � 2 �L21I2 sin��t�

v2 � L21
di1
dt � L22

di2
dt � L22

di2
dt � � 2 �L22I2 sin��t�

and
V1 � �L12I2 � L12 � V1

�I2
� 20

2��60�1.0 � 53. 05mH

V2 � �L22I2 � L22 � V2
�I2

� 60
2��60�1.0 � 0. 159 15H

The coupling factor is
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k � L12

L11L22
� 53.05�10�3

0.141 47�0.159 15
� 0. 35355

Example 1.5: Given the magnetic circuit as shown in Figure 1.6, neglect fringing effects,
leakage flux and reluctances in the magnetic materials. Determine the self-inductances and
mutual inductances.

Figure1.6 The magnetic circuit for Example 1.5
Solution: The reluctance of each air gap is �g � g

�0A where A is the cross-sectional area of
the gap. The fluxes satisfy the following equation

�1 � �2 � �3

For the left loop, we have
�1 � �1�g � �3�g � �g��1 � �3�

that is,
�1 � �3 � �1

�g

For the right loop, we have
�2 � �2�g � �3�g � �g��2 � �3�

that is,
�2 � �3 � �2

�g

Substituting �1 � �2 � �3 into �1 � �3 � �1
�g

gives

�2 � 2�3 � �1
�g

Subtracting �2 � �3 � �2
�g

from �2 � 2�3 � �1
�g

yields

3�3 � �1
�g

� �2
�g

� �1��2
�g

that is,
�3 � �1��2

3�g

Then, it follows from �2 � �3 � �2
�g

that

�2 � �3 �
�2
�g

� �1��2
3�g

� 3�2
3�g

� �1�2�2
3�g

� N1i1�2N2i2
3�g

and from �1 � �2 � �3, we have
�1 � �2 � �3 � �1�2�2

3�g
� �1��2

3�g
� 2�1��2

3�g
� 2N1i1�N2i2

3�g

Therefore,
�1 � N1�1 �

2N1
2

3�g
i1 �

N1N2
3�g

i2

�2 � N2�2 � N1N2
3�g

i1 �
2N2

2

3�g
i2

which implies that
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L11 �
2N1

2

3�g
, L12 � L21 � N1N2

3�g
, L22 �

2N2
2

3�g

with �g � g
�0A .

Chapter 2. Electromechanical Energy Conversion
An electromechanical system consists of an electrical subsystem (electric circuits such as
windings), a magnetic subsystem (magnetic field in the magnetic cores and airgaps), and a
mechanical subsystem (mechanically movable parts such as a plunger in a linear actuator
and a rotor in a rotating electrical machine), as shwon in Figure 2.1.

Figure 2.1 General concept of electromechanical system modeling

2.1 Force and Torque on a Current Carrying Conductor: Motor
Action
The force on a conductor carrying a current i in a uniform magnetic field B is given by the
Lorentz’s force law:

f � i l � B
In a rotating system, the torque about an axis can be calculated by

	 � r � f
where r is the radius vector from the axis towards the conductor.

2.2 Energy Stored in Magnetic Field
Energy Stored in Magnetic Circuit with a Single Coil
Consider the magnetic circuit with a single winding as shown in Figure 1.1. Neglect losses.
Note that

e � d�
dt

and
L � �

i

The electric input power is determined from
p � ie � i d�

dt

The energy stored in the field during dt is
dW� � pdt � id�

With zero initial energy stored in the magnaetic field, the energy at time t is
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W� � �
0

t
pdt � �

0

�
id� � �

0

� �
L d� � 1

2L �
2

or
W� � �

0

t
pdt � �

0

�
id� � �

0

i
id�Li� � 1

2 Li2

Example 2.1: (see Example 1.1) A magnetic core is shown in Figure 1.3. Its depth is 3cm
and its mean length is 30cm. The length of the air-gap is 0.05cm. The coil has 500 turns.
The relative permeability of the core is assumed to be 70,000. Neglect fringing effects and
assume the flux density of the core is Bc � 1. 0Wb/m2. The frequency of the source is 60Hz.
Find the inductances of the core and energy stored in the field.
Solution: It follows from Example 1.1 that

�c � lc
�r�0Ac

� 30�10�2

70000�4��10�7�0.03�0.03
� 3789. 4A � t/Wb

�a � la
�0Aa

� 0.05�10�2

4��10�7�0.03�0.03
� 4 421 00A � t/Wb

� � �c � �a � 3789. 4 � 4 421 00 � 4 458 90A � t/Wb
The inductance is

L � �
i � N�

i � N
i

�
� � N

i
Ni
� � N2

� � 5002

4 458 90 � 0. 560 68H

If �c is neglected,
L � N2

�a
� 5002

4 421 00 � 0. 565 48H

The error caused by neglecting the reluctance of the core is only
error � 0. 565 48 � 0. 560 68 � 0. 004 8H.

The flux in the magnetic circuit is
� � BcAc � 1. 0 � 0. 03 � 0. 03 � 0. 000 9Wb

The current in the coil is
i � ��

N � 0.000 9�4 458 90
500 � 0. 802 6A

The stored energy is
W� � 1

2 Li2 � 1
2 � 0. 560 68 � �0. 802 6�2 � 0. 180 59J

Energy Stored in Magnetic Circuit with Two Coils
Consider the magnetic circuit with two windings as shown in Figure 1.5. Neglect losses.
Then the electric input energy is equal to the energy stored in the field, that is,

dWs � dW�

The electric input power is
p � e1i1 � e2i2

and the input energy is
dWe � pdt � e1i1dt � e2i2dt

Note that e1 � d�1
dt and e2 � d�2

dt .
Thus, the stored energy can be expressed as

dW� � dWe � i1d�1 � i2d�2

Recall the relations L12 � L21 and
�1 � �11 � �12 � L11i1 � L12i2

�2 � �21 � �22 � L21i1 � L22i2

to get
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dW� � dWe � i1d�L11i1 � L12i2� � i2d�L21i1 � L22i2�

� L11i1di1 � L12i1di2 � L21i2di1 � L22i2di2

� L11i1di1 � L12�i1di2 � i2di1� � L22i2di2

� L11i1di1 � L12d�i1i2� � L22i2di2

For the case that the inductances are independdent of currents, W� can be calculated by
W� � ��L11i1di1 � L12d�i1i2� � L22i2di2� � 1

2 L11i1
2 � L12i1i2 � 1

2 L22i2
2

On the other hand, solving the equations
�1 � L11i1 � L12i2

�2 � L21i1 � L22i2

for i1 and i2 yields
i1 � �11�1 � �12�2

i2 � �21�1 � �22�2

where �11 � L22/�,�12 � �21 � �L12/�,�22 � L11/�, and � � L11L22 � �L12�2.
Then,

dW� � ��11�1 � �12�2�d�1 � ��21�1 � �22�2�d�2

� �11�1d�1 � �12�2d�1 � �21�1d�2 � �22�2d�2

� �11�1d�1 � �12��2d�1 � �1d�2� � �22�2d�2

� �11�1d�1 � �12d��1�2� � �22�2d�2

which means that
W� � ���11�1d�1 � �12d��2�1� � �22�2d�2� � 1

2 �11
2 �1

2 � �12�1�2 � 1
2 �22�2

2

2.3 Force and Torque Calculation from Energy
A Singly Excited Linear Actuator

Figure2.2 A singly excited linear actuator
Consider a singly excited linear actuator as shown in Figure 2.3. The winding resistance is
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R. A voltage v is applied to the winding, which produces a current i. Assume that at a
certain time instant t, the movable plunger is positioned at x and the force acting on the
plunger is f with the reference direction chosen in the positive direction of the x axis, as
shown in the diagram. After a time interval dt, the plunger has moved for a distance dx
under the action of the force f . The mechanical work done by the force during this time
interval is thus

dWm � fdx
The electrical energy supplied by the electrical source during this time interval is calculated
by

dWe � vidt
The energy dissipated in the winding resistance during this time interval is

dWloss � Ri2dt
Suppose that there is no mechanical losses in the system. According to the principle of
conservation of energy (energy is neither created nor destroyed and it is merely changed in
form), the energy stored in the magnetic field during this time interval dWf must satisfy

dW� � dWe � dWloss � dWm � vidt � Ri2dt � fdx � �vi � ri�idt � fdx � eidt � fdx � d�
dt idt � fdx � id�

From the above equation, we know that the energy stored in the magnetic field Wf is a
function of � and x. Therefore, Wf can be expressed as

W���, x� �
�W���,x�

�� d� �
�W���,x�

�x dx

By comparing the above two equations, we conclude
i � �W���,x�

�� , f � � �W���,x�
�x

It follows from Section 2.3 that the energy stored in the magnetic field can be calculated by
W���, x� � �

0

�
i��, x�d�

For a magnetically linear system (with a constant permeability or a straight line
magnetization curve such that the inductance of the coil is independent of the excitation
current), the above expression becomes

W���, x� � 1
2

�2

L�x�

Therefore, the force can be calculated by

f � � �W���,x�
�x � 1

2
�

L�x�

2 dL�x�
dx � 1

2 i2 dL�x�
dx

Example 2.2: Calculate the force acting on the plunger of a linear actuator as shown in
Figure 2.3.

11



Figure2.3 A singly excited linear actuator
Solution: The reluctance of the actuator is

�g � 2g
�0�d�x�l

The inductance of the actuator is
L�x� � N2

�g
� �0N2l

2g �d � x�

Therefore, the force acting on the plunger is
f � 1

2 i2 dL�x�
dx � � �0l

4g �Ni�2

The minus sign of the force indicates that the direction of the force is to reduce the
displacement so as to reduce the reluctance of the air gaps. Since this force is caused by
the variation of magnetic reluctance of the magnetic circuit, it is known as the reluctance
force.
Doubly Excited Rotating Actuator

Figure 2.4 A doubly excited actuator
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The general principle for force and torque calculation discussed above is equally applicable
to multi-excited systems. Consider a doubly excited rotating actuator as shown in Figure
2.4. The differential energy functions can be derived as following:

dW� � dWe � dWm

where
dWe � i1d�1 � i2d�2

dWm � 	d�
Hence,

dW���1,�2,�� � i1d�1 � i2d�2 � 	d� �
�W���1,�2,��

��1
d�1 �

�W���1,�2,��
��2

d�2 �
�W���1,�2,��

�� d�

which implies that
i1 �

�W���1,�2,��
��1

i2 �
�W���1,�2,��

��2

	 � � �W���1,�2,��
��

Note that for a linear system
W���1,�2,�� � 1

2 �11
2 �1

2 � �12�1�2 � 1
2 �22�2

2

Then, we have
	 � � �W���1,�2,��

�� � � 1
2 �1

2 d�11���
d� � �1�2

d�12���
d� � 1

2 �2
2 d�22���

d�

It is useful to express 	 in terms of L11, L12, and L22. It can be verified that
	 �

�W��i1,i2,��
�� � 1

2 i1
2 dL11���

d� � i1i2
dL12���

d� � 1
2 i2

2 dL22���
d�

Example 2.3: Write an expression for the inductance of the magnetic circuit for Figure 2.5
as a function of � and derive an expression for the torque acting on the robot as a function
of the winding current i and the rotor angle �. Neglect the effects of fringing and the
reluctance of the steel.

Figure2.5 Singly excited rotational actuator
Solution: The reluctance of the air-gaps is

�g � 2g
�0h�r�0.5g��

The inductance of the magnetic circuit is

13



L��� � N2

�g
� �0N2h�r�0.5g�

2g �

The energy stored in the magnetic field is
W���,�� � �

0

�
i��,��d� � �

0

� �
L��� d� � 1

2
�2

L���

The torque is

	 � � �W���,��
�� � 1

2
�

L���

2 dL���
d� � 1

2 i2 dL���
d� � 1

2
�0N2h�r�0.5g�

2g i2

Example 2.4: In the system shown in Figure 2.4, the inductances in henrys are given as
L11 � 0. 001�3 � cos2��
L12 � 0. 3 cos�
L22 � 30 � 10 cos2�

Find the torque 	���for currents i1 � 0. 8A and i2 � 0. 01A.
Solution: The torque can be determined by

	 � 1
2 i1

2 dL11���
d� � i1i2

dL12���
d� � 1

2 i2
2 dL22���

d�

� 1
2 i1

2��0. 002 sin 2�� � i1i2��0. 3 sin�� � 1
2 i2

2��20 sin 2��
� �0. 001i1

2 sin 2� � 0. 3i1i2 sin� � 10i2
2 sin 2�

� �0. 001 � 0. 82 sin 2� � 0. 3 � 0. 8 � 0. 01 sin� � 10 � 0. 012 sin 2�
� �0. 001 64 sin 2� � 0. 002 4 sin�

Example 2.5: The magnetic circuit of Figure 2.6 is excited by a 100-turn coil wound over the
central leg. The depth is 1cm, a�1cm and b�5cm. Determine the current in the coil that is
necesssary to keep the movable part suspended at a distance of 1cm. Both magnetic circuit
and movable part have a cross-sectional area of 1cm2. What is the energy stored in the
systems? The relative permeability and the density of the magnetic material are 2000 and
7.85g/cm3, respectively.

Figure2.6 Figure for Example 2.5
Solution: The mean length for each of the outer legs including a part of the movable part is

lo � 1
2 a � b � 1

2 a � 1
2 a � b � 1

2 a � 1
2 a � b � 1

2 a � 3a � 3b � 3�a � b� � 3�1 � 5� � 18cm
The mean length of the central leg is

lc � 1
2 a � b � 1

2 a � a � b � 1 � 5 � 6cm
The length of the air gap is assumed to be x. The reluctance of each par is calculated as

�o � lo
�r�0A � 18�10�2

2000�4��10�7�0.0001
� 7. 162 0 � 105A � t/Wb

�c � lc
�r�0A � 6�10�2

2000�4��10�7�0.0001
� 2. 387 3 � 105A � t/Wb

�g � lc
�r�0A � x

4��10�7�0.0001
� 7. 957 7 � 109x
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The applied mmf is � � Ni � 100i where i is the required current in the coil.
The total reluctance as viewed from the magnetomotive source is

� � �c � �g � 0. 5��o � �g�

� 2. 387 3 � 105 � 7. 957 7 � 109x � 0. 5�7. 162 0 � 105 � 7. 957 7 � 109x�

� 1. 1937 � 1010x � 5. 9683 � 105

Hence, the inductance is
L�x� � N2

� � 1002

1. 1937�1010x�5. 9683�105 � 1
1. 1937�106x�59.683

The megnetic force acting on the movable part is
f � 1

2 i2 dL�x�
dx � � 1

2 i2 1.1937�106

59.683�1.1937�106x 2

The negative sign indicates that the force is acting in the upward direction. Therefore, the
magnitude of the force of attraction for x � 1cm is

f � � 1
2

1.1937�106

59.683�1.1937�106�0.01 2 i2 � 4. 147 1 � 10�3i2

The length of the movable part is 3a � 2b � 13cm. The volume of the movable part is
13 � 1 � 13cm3, so the mass of the movable part is 13 � 7. 85 � 102. 05g.
For the movable part to be stationary, the force of gravity must equal to the magnetic force
calculated by

fg � mg � 102. 05 � 10�3 � 9. 8 � 1. 000 1N
that is

4. 147 1 � 10�3i2 � 1. 000 1
Solving this equation for the current gives

i � 1. 000 1
4. 147 1�10�3 � 15. 529A

The inductance of the magnetic circuit at x � 1cm is
L�1cm� � 1

1. 1937�106�0.01�59.683
� 8. 335 6 � 10�5H

The energy stored in the magnetic field is
Wf � 1

2 Li2 � 1
2 � 8. 335 6 � 10�5 � 15. 5292 � 1. 005 1 � 10�2J

Chapter 3 Dynamics of Electromechanical Systems

3.1 Mathematical Model
Figure 3.1 shows the model of a simple electromechanical system, which consists of three
parts: an electrical system, an electromechanical energy-conversion system, and an
mechanical system.
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Figure3.1 Model of an electromechanical system
Neglect losses in the electromechanical system. For the electrical system, the following
equation can be obtained from KVL:

v � Ri � e � Ri � d�
dt � Ri � d�L�x�i�

dt � Ri � L�x� di
dt � i dL�x�

dx
dx
dt

Assume that the spring is normally unstretched at x � 0. Then, the following equation can
be obtained from Newton’s law:

f � kx � B dx
dt � M d2x

dt2

where f and L�x� depend on the properties of the electromechanical energy-conversion
system.
The diffential equations above are called the mathematical model of the electromechanical
system.
Example 3.1: An electromechanical system is shown in Figure 3.2. The voltage source has
a DC voltage Vs. The switch is turned on at t � 0. The bar slides along a pair of frictionless
rails in a horizontal plane. The bar has a mass of m. The resistance of the system is R.
Assume all initial conditions are zero. Determine the current i�t� and the velocity v � dx

dt of
the bar.

Figure3.2 Example 3.1
Solution: The induced voltage is

e�t� � l v � B � lBv�t�
From KVL, we obtain

vs�t� � Ri�t� � e�t� � Ri�t� � lBv�t�
which implies that

i�t� � 1
R vs�t� � lB

R v�t�
The induced force is

f � i l � B � lBi�t� � lB
R vs�t� � l2B2

R v�t�
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From Newton’s law, we have
f � lB

R vs�t� � l2B2

R v�t� � m dv�t�
dt

So the mathematical model for this system is
m dv�t�

dt � l2B2

R v�t� � lB
R vs�t�

This equation can be solved by using Laplace transform. Note that vs�t� is a step signal and
its Laplace transform is Vs

s . Taking Laplace transform gives
msV�s� � l2B2

R V�s� � lB
R

Vs
s

Solving it for V�s� yields

V�s� �
lB
R

Vs
s

ms� l2B2
R

�
lBVs
mR

s s� l2B2
mR

Carrying the partial fraction expansion gives
V�s� � A1

s � A2

s� l2B2
mR

where

A1 � s
lBVs
mR

s s� l2B2
mR s�0

�
lBVs
mR

l2B2
mR

� Vs

lB

A2 � s � l2B2

mR

lBVs
mR

s s� l2B2
mR s�� l2B2

mR

�
lBVs
mR

� l2B2
mR

� � Vs

lB

Therefore,

V�s� �
Vs
lB
s �

� Vs
lB

s� l2B2
mR

Taking inverse Laplace transform gives
v�t� � Vs

lB � Vs

lB e� l2B2
mR t

The current in the circuit is given by
i�t� � 1

R vs�t� � lB
R v�t� � Vs

R � lB
R

Vs

lB � Vs

lB e� l2B2
mR t � Vs

R e� l2B2
mR t

3.2 Dynamics of DC Generators
A separetely excited dc generator delivering power to a static load is shown in Figure 3.3.
Assume that the speed of the generator is constant.

Figure3.3 Equivalent circuit of a dc generator
During the transient state, the field voltage satisfies the equation

V f � R fi f�t� � Lf
di f�t�

dt

and the generated voltage is
ea�t� � Ke�i f�t� � �Ra � RL�ia�t� � �La � LL�

dia�t�
dt

Taking the Laplace transform gives
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V f�s� � R fIf�s� � Lf�sIf�s� � i f�0��
Ke�If�s� � �Ra � RL�Ia�s� � �La � LL��sIa�s� � ia�0��

Solving these equations yields
If�s� �

Vf�s��L fi f�0�
L fs�Rf

Ia�s� �
Ke�If�s���La�LL �ia�0�

�La�LL �s�Ra�RL
�

Ke��Vf�s��L fi f�0����La�LL �ia�0��L fs�Rf �

�L fs�Rf ���La�LL �s�Ra�RL �

Note that when the system reaches its steady state condition, di f�t�
dt � 0 and dia�t�

dt � 0, from
which the following equations are obtained for steady state operation:

V f � R fi f���
Ke�i f��� � �Ra � RL�ia���

that is,
i f��� �

Vf

Rf

ia��� �
Ke�i f���

Ra�RL

Example 3.2: A separately excited dc generator operating at 1500rpm has the following
parameters: Ra � 0. 2�, La � 2. 5mH, R f � 3�, Lf � 25mH, and Ke � 0. 191. If a dc voltage of
120V is suddenly applied to the field winding under a load with RL � 40� and LL � 40mH,
determine the field current, armature current, and generated voltage as a function of time,
the approximate time to reach the steady-state condition, and the steady-state values of the
field current and induced voltage.
Solution: The Laplace transform of the field voltage is V f�s� � 120

s . The initial conditions are
i f�0� � 0 and ia�0� � 0. The field current in s-domain is given by

If�s� �
Vf�s��L fi f�0�

L fs�Rf
�

120
s �0.025�0
0.025s�3 � 120

s�0.025s�3� �
120

0.025

s s� 3
0.025

� 4800
s�s�120� � A

s � B
s�120 � 40

s � �40
s�120

where
A � s 4800

s�s�120� s�0
� 4800

0�120 � 40

B � �s � 120� 4800
s�s�120� s��120

� 4800
�120 � � 40

Therefore, the field current in time domain is
i f�t� � 40 � 40e�120t
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Figure3.4 The field current of the dc generator
The generator speed � � 2�n

60 � 2��1500
60 � 157rad/s. The armature current in s-domain is

Ia�s� �
Ke��V f�s� � Lfi f�0�� � �La � LL�ia�0��Lfs � R f�

�Lfs � R f���La � LL�s � Ra � RL�

�
0. 191 � 157 � � 120

s � 0. 025 � 0� � �0. 0025 � 0. 04� � 0 � �0. 025s � 3�
�0. 025s � 3���0. 0025 � 0. 04�s � 0. 2 � 40�

� 0. 191 � 157 � 120
s�0. 025s � 3��0. 0425s � 40. 2�

�
0.191�157�120
0.025�0.0425

s s � 3
0.025 s � 40.2

0.0425

� 3. 386 8 � 106

s�s � 120. 0��s � 945. 88�

� A
s � B

s � 120 � C
s � 945. 88

� 29. 838
s � �34. 174

s � 120 � 4. 335 5
s � 945. 88

where
A � s 3. 386 8�106

s�s�120.0��s�945. 88� s�0
� 3. 386 8�106

�0�120��0�945. 88� � 29. 838

B � �s � 120� 3. 386 8�106

s�s�120.0��s�945. 88� s��120
� 3. 386 8�106

��120���120�945. 88� � � 34. 174

C � �s � 945. 88� 3. 386 8�106

s�s�120.0��s�945. 88� s��945. 88
� 3. 386 8�106

��945. 88���945. 88�120� � 4. 335 5

Therefore, the field current in time domain is
ia�t� � 29. 838 � 34. 174e�120t � 4. 335 5e�945. 88t
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Figure3.5 The armature current of the dc generator
The induced voltage is given by

ea�t� � Ke�i f�t� � 0. 191 � 157 � �40 � 40e�120t� � 1199. 5 � 1199. 5e�120t
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Figure3.6 The induced voltage of the dc generator
For practical purposes, the field current reaches its steady-state value after five time
constant 5	f � 5 L f

Rf
� 5 0.025

3 � 0. 042s.

The final values of the field current, armature current, and induced voltage are
i f��� � 40A �

Vf

Rf
, ia��� � 29. 838A �

Ke�i f���
Ra�RL

, and ea��� � 1199. 5V � Ke�i f���.

3.3 DC Motor Dynamics

20



Figure3.7 DC motor dynamics
A dc motor is mainly composed of a stator, rotor, and commutator. The field winding is
placed on the stator, which is also called the stator winding while the armature winding is
mounted on the rotor, which is also referred to as the rotor winding. A pulsating induced
voltage in the armature winding is converted to a dc voltage through the commutator. The
equivalent circuit for a separately excited dc motor, together with a mechanical load, is
shown in Figure 3.7.
For the field circuit, it follows from KVL that

v f�t� � R fi f�t� � Lf
di f�t�

dt

where v f, i f, R f, and Lf are the field voltage, current, resistance, and inductance,
respectively.
For the armature circuit, according to KVL, we obtain

va�t� � Raia�t� � La
dia�t�

dt � ea�t�
where va, ia, Ra, and La are the armature voltage, current, resistance, and inductance,
respectively, and ea is the back emf, which is determined by

ea�t� � Kei f�t���t�
where Ke is the voltage constant and ��t� is the angular speed of the motor.
For the mechnical load, it follows from Newton’s law that

	d�t� � 	L�t� � D��t� � J d��t�
dt

where D and J are the viscous friction coefficient and the moment of inertia of the rotating
members, respectively, 	L is the load torque and 	d is the developed torque of the dc motor,
which is determined by

	d�t� � K	i f�t�ia�t�
where K	 is the torque constant, which is the same as the voltage constant Ke.
Substituting for ea and 	d in the three differential equations and solving them for the
direvatives, it follows that

di f�t�
dt � � Rf

L f
i f�t� � 1

L f
v f�t�

dia�t�
dt � � Ra

La
ia�t� � Ke

La
i f�t���t� � 1

La
va�t�
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d��t�
dt � Ke

J i f�t�ia�t� � 1
J 	L�t� � D

J ��t�
which is a set of nonlinear differential equations. In these equations, both v f�t� and va�t� can
be adjusted to control the speed ��t�. When v f�t� is kept constant, that is, i f�t� is constant,
the motor speed can be controlled by adjusting the armature voltage va�t� and the motor is
called the armature-controlled dc motor. On the other hand, when va�t� is kept constant, the
motor speed can be controlled by adjusting the field voltage v f�t� and the motor is called the
field-controlled dc motor.
After the motor reaches the steady-state condition, i f�t�, ia�t�, and ��t� remain constant,
which implies that

di f�t�
dt � 0, dia�t�

dt � 0, d��t�
dt � 0

Then, the following equations are obtained for the motor under steady-state condition.
v f��� � R fi f���
va��� � Raia��� � ea���
	d��� � 	L��� � D���� � 0
ea��� � Kei f�������
	d��� � Kei f���ia���

or
0 � �R fi f��� � v f���
0 � �Raia��� � Kei f������� � va���
0 � Kei f���ia��� � 	L��� � D����

from which one can determine the quantities i f���, ia���, and ���� under steady-state
condition.
Example 3.3: A 240V, 12hp, separately excited dc motor has the following parameters
Ra � 0. 28�, La � 2. 81mH, R f � 320�, Lf � 2H, Ke � 1. 03. J � 0. 087kg � m, and
D � 0. 02N � m � s. It is operating on a load of 15N � m in the linear region of its magnetization
characteristic. Determine the speed, field current, and armature current under steady-state
condition.
Solution: The equations for the motor under steady-state condition are

0 � �R fi f��� � v f���
0 � �Raia��� � Kei f������� � va���
0 � Kei f���ia��� � 	L��� � D����

Solving the first equation for i f�t� gives
i f��� �

vf���
Rf

� 240
320 � 0. 75A

Solving the second equation for ia�t� yields
ia��� � va���

Ra
� Kei f���

Ra
����

Substituting this into the third equation produces
0 � Kei f���

va���
Ra

� Kei f���
Ra

���� � 	L��� � D����

that is,
0 � Kei f���va��� � Ke

2i f
2������� � 	L���Ra � DRa����

Solving this for ����, we have
���� �

Kei f���va����	L���Ra

Ke
2i f

2����DRa
� 1.03�0.75�240�15�0.28

1.032�0.752�0.02�0.28
� 300. 82rad/s

Therefore, the armature current is
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ia��� � va���
Ra

� Kei f���
Ra

���� � 240
0.28 � 1.03�0.75

0.28 � 300. 82 � 27. 202A

3.4 Armature-Controlled DC Motors
For armature controlled dc motors, the field voltage is kept constant at V f, so the field
current is constant too, which implies that di f�t�

dt � 0 and i f�t� � If �
Vf

Rf
. The dynamic model

for an armature controlled dc motor becomes
dia�t�

dt � � Ra
La

ia�t� � Ke
La

If��t� � 1
La

va�t�
d��t�

dt � Ke
J Ifia�t� � 1

J 	L�t� � D
J ��t�

which is in the state-space form with state variables ia�t� and ��t�.
Taking the Laplace trasform, together with initial conditions ia�0� and ��0�, gives

sIa�s� � ia�0� � � Ra
La

Ia�s� � Ke
La

If��s� � 1
La

Va�s�

s��s� � ��0� � Ke
J IfIa�s� � 1

J 	L�s� � D
J ��s�

or

LasIa�s� � Laia�0� � �RaIa�s� � KeIf��s� � Va�s�

Js��s� � J��0� � KeIfIa�s� � 	L�s� � D��s�

Solving the first equation for Ia�s� yields
Ia�s� �

�Va�s��Laia�0���KeIf��s�
Las�Ra

Substituting into the second equation gives
Js��s� � J��0� � KeIf

�Va�s��Laia�0���KeIf��s�
Las�Ra

� 	L�s� � D��s�
that is,

�Js � D���s� �
KeIf�Va�s��Laia�0��

Las�Ra
� �KeIf �

2��s�
Las�Ra

� J��0� � 	L�s�
Solving this for ��s� produces

��s� �
KeIf�Va�s��Laia�0����Las�Ra ��J��0��	L�s��

�Js�D��Las�Ra ���KeIf �
2

Then, the armature current is given by

23



Ia�s� �
�Va�s� � Laia�0�� � KeIf��s�

Las � Ra

�
�Va�s� � Laia�0�� � KeIf

KeIf�Va�s��Laia�0����Las�Ra ��J��0��	L�s��

�Js�D��Las�Ra ���KeIf �
2

Las � Ra

�

�Va�s��Laia�0�� �Js�D��Las�Ra ���KeIf �
2

�Js�D��Las�Ra ���KeIf �
2 � KeIf

KeIf�Va�s��Laia�0����Las�Ra ��J��0��	L�s��

�Js�D��Las�Ra ���KeIf �
2

Las � Ra

�

�Va�s� � Laia�0�� �Js � D��Las � Ra� � �KeIf�
2

�KeIf�KeIf�Va�s� � Laia�0�� � �Las � Ra��J��0� � 	L�s���

�Las � Ra� �Js � D��Las � Ra� � �KeIf�
2

�

�Va�s� � Laia�0���Js � D��Las � Ra� � �KeIf�
2�Va�s� � Laia�0��

��KeIf�
2�Va�s� � Laia�0�� � KeIf�Las � Ra��J��0� � 	L�s��

�Las � Ra� �Js � D��Las � Ra� � �KeIf�
2

�
�Va�s� � Laia�0���Js � D��Las � Ra� � KeIf�Las � Ra��J��0� � 	L�s��

�Las � Ra� �Js � D��Las � Ra� � �KeIf�
2

�
�Va�s� � Laia�0���Js � D� � KeIf�J��0� � 	L�s��

�Js � D��Las � Ra� � �KeIf�
2

Example 3.4: (see Example 3.3) A 240V, 12hp, separately excited dc motor has the
following parameters Ra � 0. 28�, La � 2. 81mH, R f � 320�, Lf � 2H, Ke � 1. 03.
J � 0. 087kg � m, and D � 0. 02N � m � s. Determine its speed and armature current as a
function of time when it is suddenly connected to a 240V dc source at no load condition.
Solution: Prior to the application of armature voltage the motor speed and armature current
are zero. That is, at t � 0, ia�0� � 0 and ��0� � 0. In addition, the load torque is zero
because the motor operates at no load. That is, 	L�t� � 0. The field current is

If �
Vf

Rf
� 240

320 � 0. 75A

Note that the armature voltage va�t� is a step signal with amplitude of 240V, so its Laplace
transform is Va�s� � 240

s .
Therefore, we have
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��s� �
KeIf�Va�s� � Laia�0�� � �Las � Ra��J��0� � 	L�s��

�Js � D��Las � Ra� � �KeIf�
2

�
1. 03 � 0. 75 � 240

s

�0. 087s � 0. 02��0. 00281s � 0. 28� � �1. 03 � 0. 75�2

� 185. 4
s�2. 444 7 � 10�4s2 � 2. 441 6 � 10�2s � 0. 602 36�

�
185. 4

2. 444 7�10�4

s s2 � 2. 441 6�10�2

2. 444 7�10�4 s � 0.602 36
2. 444 7�10�4

� 7. 583 8 � 105

s�s2 � 99. 873s � 2463. 9�

� 7. 583 8 � 105

s�s � 44. 482��s � 55. 391�
In order to determine the inverse Laplace transform, we expand ��s� into partial fractions as

��s� � A
s � B

s�44. 482 � C
s�55. 391

where A, B, and Ccan now be determined by the root-substitution method. Thus,
A � s 7. 583 8�105

s�s�44. 482��s�55. 391� s�0
� 7. 583 8�105

�0�44. 482��0�55. 391� � 307. 80

B � �s � 44. 482� 7. 583 8�105

s�s�44. 482��s�55. 391� s��44. 482
� 7. 583 8�105

��44. 482���44. 482�55. 391� � � 1562. 9

C � �s � 55. 391� 7. 583 8�105

s�s�44. 482��s�55. 391� s��55. 391
� 7. 583 8�105

��55. 391���55. 391�44. 482� � 1255. 1

Finally, we can take the inverse Laplace transform of
��s� � 307. 80

s � �1562. 9
s�44. 482 � 1255. 1

s�55. 391

and get the angular velocity as
��t� � 307. 80 � 1562. 9e�44. 482t � 1255. 1e�55. 391t
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Figure3.8 The motor speed
The Laplace transform of the armature current is
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Ia�s� �
�Va�s� � Laia�0���Js � D� � KeIf�J��0� � 	L�s��

�Js � D��Las � Ra� � �KeIf�
2

�
240

s �0. 087s � 0. 02�
�0. 087s � 0. 02��0. 00281s � 0. 28� � �1. 03 � 0. 75�2

�
240�0. 087s � 0. 02�

s�2. 444 7 � 10�4s2 � 2. 441 6 � 10�2s � 0. 602 36�

�
240�0.087

2. 444 7�10�4 s � 240�0.02
2. 444 7�10�4

s s2 � 2. 441 6�10�2

2. 444 7�10�4 s � 0.602 36
2. 444 7�10�4

� 85409s � 19634
s�s2 � 99. 873s � 2463. 9�

� 85409s � 19634
s�s � 44. 482��s � 55. 391�

In terms of its partial fraction expansion, Ia�s� can be written as
ia�s� � A

s � B
s�44. 482 � C

s�55. 391 � 7. 968 7
s � 7788. 8

s�44. 482 � �7796. 7
s�55. 391

where
A � s 85409s�19634

s�s�44. 482��s�55. 391� s�0
� 85409�0�19634

�0�44. 482��0�55. 391� � 7. 968 7

B � �s � 44. 482� 85409s�19634
s�s�44. 482��s�55. 391� s��44. 482

� 85409���44. 482��19634
��44. 482���44. 482�55. 391� � 7788. 8

C � �s � 55. 391� 85409s�19634
s�s�44. 482��s�55. 391� s��55. 391

� 85409���55. 391��19634
��55. 391���55. 391�44. 482� � � 7796. 7

Finally, we obtain the armature current as
ia�t� � 7. 968 7 � 7788. 8e�44. 482t � 7796. 7e�55. 391t
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Figure3.9 The motor armature current
The rated current is Ia�rating� � 12�746

240 � 37. 3A. The starting current is way too high so that
the motor will be burnt.
Note that the mechanical time constant is 	m � J

D � 0.087
0.02 � 4. 35s and the electrical time

constant is
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	e � La
Ra

� 0.00281
0.28 � 1. 003 6 � 10�2s.

Example 3.5: (See Example 3.3) A 240V, 12hp, separately excited dc motor has the
following parameters Ra � 0. 28�, La � 2. 81mH, R f � 320�, Lf � 2H, Ke � 1. 03.
J � 0. 087kg � m, and D � 0. 02N � m � s. Determine its speed and armature current as a
function of time when it is suddenly connected to a 30V dc source at a load of 15N � m.
Solution: Prior to the application of armature voltage the motor speed and armature current
are zero. That is, at t � 0, ia�0� � 0 and ��0� � 0. In addition, the load torque is 15N � m, that
is, 	L�t� � 15. The field current is

If �
Vf

Rf
� 240

320 � 0. 75A

Note that Va�s� � 50
s and 	L�s� � 15

s .
Therefore, we have

��s� �
KeIf�Va�s� � Laia�0�� � �Las � Ra��J��0� � 	L�s��

�Js � D��Las � Ra� � �KeIf�
2

�
1. 03 � 0. 75 � 50

s � �0. 00281s � 0. 28��� 15
s �

�0. 087s � 0. 02��0. 00281s � 0. 28� � �1. 03 � 0. 75�2

�
1. 03 � 0. 75 � 50 � �0. 00281s � 0. 28���15�

s�2. 444 7 � 10�4s2 � 2. 441 6 � 10�2s � 0. 602 36�

� 34. 425 � 0. 042 15s
s�2. 444 7 � 10�4s2 � 2. 441 6 � 10�2s � 0. 602 36�

�
34. 425

2. 444 7�10�4 � 0.042 15
2. 444 7�10�4 s

s s2 � 2. 441 6�10�2

2. 444 7�10�4 s � 0.602 36
2. 444 7�10�4

� 1. 408 1 � 105 � 172. 41s
s�s2 � 99. 873s � 2463. 9�

� 1. 408 1 � 105 � 172. 41s
s�s � 44. 482��s � 55. 391�

In order to determine the inverse Laplace transform, we expand ��s� into partial fractions as
��s� � A

s � B
s�44. 482 � C

s�55. 391

where A, B, and C can now be determined by the root-substitution method. Thus,
A � s 1. 408 1�105�172. 41s

s�s�44. 482��s�55. 391� s�0
� 1. 408 1�105�172. 41�0

�0�44. 482��0�55. 391� � 57. 149

B � �s � 44. 482� 1. 408 1�105�172. 41s
s�s�44. 482��s�55. 391� s��44. 482

� 1. 408 1�105�172. 41���44. 482�
��44. 482���44. 482�55. 391� � � 305. 98

C � �s � 55. 391� 1. 408 1�105�172. 41s
s�s�44. 482��s�55. 391� s��55. 391

� 1. 408 1�105�172. 41���55. 391�
��55. 391�44. 482���55. 391� � 248. 83

Finally, we can take the inverse Laplace transform of
��s� � 57. 149

s � �305. 98
s�44. 482 � 248. 83

s�55. 391

and get the angular velocity as
��t� � 57. 149 � 305. 98e�44. 482t � 248. 83e�55. 391t

27



0.0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

t (s)

w (rad/s)

Figure3.10 The motor speed
The Laplace transform of the armature current is

Ia�s� �
�Va�s� � Laia�0���Js � D� � KeIf�J��0� � 	L�s��

�Js � D��Las � Ra� � �KeIf�
2

�
30
s �0. 087s � 0. 02� � 1. 03 � 0. 75�� 15

s �

�0. 087s � 0. 02��0. 00281s � 0. 28� � �1. 03 � 0. 75�2

�
30�0. 087s � 0. 02� � 1. 03 � 0. 75��15�

s�2. 444 7 � 10�4s2 � 2. 441 6 � 10�2s � 0. 602 36�

� 2. 61s � 12. 188
s�2. 444 7 � 10�4s2 � 2. 441 6 � 10�2s � 0. 602 36�

�
2. 61

2. 444 7�10�4 s � 12. 188
2. 444 7�10�4

s s2 � 2. 441 6�10�2

2. 444 7�10�4 s � 0.602 36
2. 444 7�10�4

� 10676s � 49855
s�s2 � 99. 873s � 2463. 9�

� 10676s � 49855
s�s � 44. 482��s � 55. 391�

In terms of its partial fraction expansion, Ia�s� can be written as
��s� � A

s � B
s�44. 482 � C

s�55. 391 � 20. 234
s � 875. 9

s�44. 482 � �896. 14
s�55. 391

where
A � s 10676s�49855

s�s�44. 482��s�55. 391� s�0
� 10676�0�49855

�0�44. 482��0�55. 391� � 20. 234

B � �s � 44. 482� 10676s�49855
s�s�44. 482��s�55. 391� s��44. 482

� 10676���44. 482��49855
��44. 482���44. 482�55. 391� � 875. 9

C � �s � 55. 391� 10676s�49855
s�s�44. 482��s�55. 391� s��55. 391

� 10676���55. 391��49855
��55. 391�44. 482���55. 391� � � 896. 14

Finally, we obtain the armature current as
ia�t� � 20. 234 � 875. 9e�44. 482t � 896. 14e�55. 391t
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Figure3.11 The motor armature current

3.5 Field-Controlled DC Motors
In an armature-controlled dc motor, the field current is kept at a constant level and the
armature voltage is adjusted to vary the speed below its rated speed. In a field-controlled dc
motor, however, we will change the field current in order to obtain a motor speed higher
than its rated speed.
The mathmatical model for a field-controlled dc motor is given below.

di f�t�
dt � � Rf

L f
i f�t� � 1

L f
v f�t�

dia�t�
dt � � Ra

La
ia�t� � Ke

La
i f�t���t� � Va

La
d��t�

dt � Ke
J i f�t�ia�t� � 1

J 	L�t� � D
J ��t�

It is clear that these equations are nonlinear because of the products of the state variables
in these equations. As a result, the Laplace transform approach would not be appropriate to
get closed-form solutions for i f�t�, ia�t� and ��t�. However, a simplifying assumption can be
made to linearize these equations.
In an electric motor, the time constant of the electric circuit is much smaller than the time
constant of the mechnical parts. Therefore, it can be considered that the time constant of
the field circuit is much smaller than the mechanical time constant of the motor. The field
current reaches its steady-state before the armature responds to the changes in the field
current. Therefore, we have

di f�t�
dt � � Rf

L f
i f�t� � 1

L f
v f�t�

dia�t�
dt � � Ra

La
ia�t� � Ke

La
If��t� � Va

La
d��t�

dt � Ke
J Ifia�t� � 1

J 	L�t� � D
J ��t�

Taking the Laplace transform gives
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sIf�s� � i f�0� � �
R f

Lf
If�s� � 1

Lf
V f�s�

sIa�s� � ia�0� � � Ra
La

Ia�s� � Ke
La

If��s� � 1
La

Va�s�

s��s� � ��0� � Ke
J IfIa�s� � 1

J 	L�s� � D
J ��s�

or

LfsIf�s� � Lfi f�0� � �R fIf�s� � V f�s�

LasIa�s� � Laia�0� � �RaIa�s� � KeIf��s� � Va�s�

Js��s� � J��0� � KeIfIa�s� � 	L�s� � D��s�

Solving these equations yields
If�s� �

Vf�s��L fi f�0�
L fs�Rf

��s� �
KeIf�Va�s��Laia�0����Las�Ra ��J��0��	L�s��

�Js�D��Las�Ra ���KeIf �
2

Ia�s� �
�Va�s��Laia�0���Js�D��KeIf�J��0��	L�s��

�Js�D��Las�Ra ���KeIf �
2

Example 3.6: (See Example 3.3) A 240V, 12hp, separately excited dc motor has the
following parameters Ra � 0. 28�, La � 2. 81mH, R f � 320�, Lf � 2H, Ke � 1. 03.
J � 0. 087kg � m, and D � 0. 02N � m � s. It is operating on a load of 15N � m in the linear region
of its magnetization characteristic. Determine its speed, field current, and armature current
as a function of time when the field voltage is suddenly reduced from 240V to 192V at t � 0.
Solution: Since the motor has already been operating at steady state on a load of
	L � 15N � m before the field voltage is suddenly changed, we have to evaluate the initial
conditions on i f�t�, ia�t� and ��t� from the equations for the steady-state operation, which is
done in Example 3.2 and the initial values are

i f�0� � 0. 75A,��0� � 300. 82rad/s, ia�0� � 27. 202A
First, we will determine the field current as follows:

If�s� �
Vf�s��L fi f�0�

L fs�Rf
�

Vf�s��L fi f�0�
L fs�Rf

�
192

s �2�0.75
2s�320 � 96�0.75s

s�s�160� � A
s � B

s�160 � 0.6
s � 0.15

s�160

where
A � s 96�0.75s

s�s�160� s�0
� 96�0.75�0

�0�160� � 0. 6

B � s 96�0.75s
s�s�160� s��160

� 96�0.75���160�
�160 � 0. 15

Taking the inverse Laplace transform produces
i f�t� � 0. 6 � 0. 15e�160t
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Figure3.12 The motor field current
which has a steady state value If � 0. 6A.
For the motor speed, we have

��s� �
KeIf�Va�s� � Laia�0�� � �Las � Ra��J��0� � 	L�s��

�Js � D��Las � Ra� � �KeIf�
2

�
1. 03 � 0. 6 � � 240

s � 0. 00281 � 27. 2� � �0. 00281s � 0. 28��0. 087 � 300. 79 � 15
s �

�0. 087s � 0. 02��0. 00281s � 0. 28� � �1. 03 � 0. 6�2

�
1. 03 � 0. 6 � �240 � 0. 00281 � 27. 2s� � �0. 00281s � 0. 28��0. 087 � 300. 79s � 15�

s�2. 444 7 � 10�4s2 � 2. 441 6 � 10�2s � 0. 387 52�

� 7. 353 4 � 10�2s2 � 7. 332 3s � 144. 12
s�2. 444 7 � 10�4s2 � 2. 441 6 � 10�2s � 0. 387 52�

�
7. 353 4�10�2

2. 444 7�10�4 s2 � 7. 332 3
2. 444 7�10�4 s � 144. 12

2. 444 7�10�4

s s2 � 2. 441 6�10�2

2. 444 7�10�4 s � 0.387 52
2. 444 7�10�4

� 300. 79s2 � 29993. s � 5. 895 2 � 105

s�s2 � 99. 873s � 1585. 1�

� 300. 79s2 � 29993. s � 5. 895 2 � 105

s�s � 19. 794��s � 80. 079�

� A
s � B

s � 19. 794 � C
s � 80. 079

� 371. 92
s � �95. 274

s � 19. 794 � 24. 147
s � 80. 079

where A, B, and C are determined by
A � s 300. 79s2�29993s�5. 895 2�105

s�s�19. 794��s�80. 079� s�0
� 300. 79�02�29993�0�5. 895 2�105

�0�19. 794��0�80. 079� � 371. 92

B � �s � 19. 794� 300. 79s2�29993s�5. 895 2�105

s�s�19. 794��s�80. 079� s��19. 794
� 300. 79���19. 794�2�29993���19. 794��5. 895 2�105

��19. 794���19. 794�80. 079� �
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� 95. 274
C � �s � 80. 079� 300. 79s2�29993s�5. 895 2�105

s�s�19. 794��s�80. 079� s��80. 079
� 300. 79���80. 079�2�29993���80. 079��5. 895 2�105

��80. 079���80. 079�19. 794� � 24.

147
Finally, we can take the inverse Laplace transform to get the angular velocity as

��t� � 371. 92 � 95. 274e�19. 794t � 24. 147e�80. 079t
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Figure3.13 The motor speed
The Laplace transform of the armature current is

Ia�s� �
�Va�s� � Laia�0���Js � D� � KeIf�J��0� � 	L�s��

�Js � D��Las � Ra� � �KeIf�
2

�
� 240

s � 0. 00281 � 27. 2��0. 087s � 0. 02� � 1. 03 � 0. 6�0. 087 � 300. 79 � 15
s �

�0. 087s � 0. 02��0. 00281s � 0. 28� � �1. 03 � 0. 6�2

�
�240 � 0. 00281 � 27. 2s��0. 087s � 0. 02� � 1. 03 � 0. 6�0. 087 � 300. 79s � 15�

s�2. 444 7 � 10�4s2 � 2. 441 6 � 10�2s � 0. 387 52�

� 6. 649 6 � 10�3s2 � 4. 709 3s � 14. 07
s�2. 444 7 � 10�4s2 � 2. 441 6 � 10�2s � 0. 387 52�

�
6. 649 6�10�3

2. 444 7�10�4 s2 � 4. 709 3
2. 444 7�10�4 s � 14. 07

2. 444 7�10�4

s s2 � 2. 441 6�10�2

2. 444 7�10�4 s � 0.387 52
2. 444 7�10�4

� 27. 2s2 � 19263s � 57553
s�s2 � 99. 873s � 1585. 1�

� 27. 2s2 � 19263s � 57553
s�s � 19. 794��s � 80. 079�

� A
s � B

s � 19. 794 � C
s � 80. 079

� 36. 309
s � 262. 37

s � 19. 794 � � 271. 48
s � 80. 079

where
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A � s 27. 2s2�19263s�57553
s�s�19. 794��s�80. 079� s�0

� 27. 2��0�2�19263��0��57553
�0�19. 794��0�80. 079� � 36. 309

B � �s � 19. 794� 27. 2s2�19263s�57553
s�s�19. 794��s�80. 079� s��19. 794

� 27. 2���19. 794�2�19263���19. 794��57553
��19. 794���19. 794�80. 079� � 262. 37

C � �s � 80. 079� 27. 2s2�19263s�57553
s�s�19. 794��s�80. 079� s��80. 079

� 27. 2���80. 079�2�19263���80. 079��57553
��80. 079���80. 079�19. 794� � � 271. 48

Finally, we obtain the armature current as
ia�t� � 36. 309 � 262. 37e�19. 794t � 271. 48e�80. 079t
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Figure3.14 The motor armature current
It is clear that the field current reaches its steady state at about 30ms whereas it takes
about 300ms for the speed and thereby the armature current to do so. This is consistent
with our assumption that the mechanical response is much slower than the changes in the
field current.
It is important to note that the armature current reaches its peak at 160A, which is well over
its rated value. This is mainly caused by the large mechanical time constant of the motor
that does not allow a rapid change in the back emf of the motor. Therefore, it is
recommended that the field current be gradualy varied so that high currents will not take
place in the armature circuit.
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Chapter 4 Transformers

4.1 Ideal Transformers
Figure 4.1 shows a transformer circuit.

 

v2,e2 v1,e1 

i2 

N2 

i1 

N1 

mφ
i  

Load 

Figure 4.1 An ideal transformer
The dot markings indicate terminals of corresponding polarity, that is, if one follows through
the primary and secondary windings beginning at their marked terminals, one will find that
both windings encircle the core in the same direction with respect to the flux. Therefore, if
one compares the voltages of the two windings, the voltages from the dot-marked to an
unmarked terminal will have the same instantaneous polarity for both windings.
A transformer is called the ideal transformer if the following assumptions are satisfied:
(A1) The core of the transformer is highly permeable so that is requires vanishingly small
magnetomotive force (mmf) to set up the flux �.
(A2) There is no eddy-current or hysteresis loss.
(A3) There is no resistance.
(A4) There is no leakage flux.
With these assumptions, it is obvious that

v1 � e1 �
d�1
dt �

d�N1��
dt � N1

d�
dt

v2 � e2 �
d�2
dt �

d�N2��
dt � N2

d�
dt

which implies that
v1
v2

�
e1
e2

�
N1
N2

� a

where a is referred to as turns ratio or transformation ratio.
Since there is no loss in the ideal transformer, the input power is the same as the output
power, that is,

v1i1 � v2i2

As a result, we have
i2
i1

�
v1
v2

� a

Now suppose that the instantaneous flux is � � �max sin��t�. Then we have
v1 � e1 � N1

d�
dt � N1��max cos��t� � 2 V1 cos��t�

v2 � e2 � N2
d�
dt � N2��max cos��t� � 2 V2 cos��t�

where V1 �
N1��max

2
and V2 �

N2��max

2
are rms values of v1 and v2.

It is a common practice to express sinusoidal signals i1, i2, e1, e2, v1, and v2 in terms of
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phasors as
�
I 1,

�
I 2, E1, E2, V1, and V2. Then, we have

�
I 2
�
I 1

�
E1

E2

�
V1

V2

� a

If
�
Z2 is the load impedance on the secondary side, then
�
Z2 �

V2
�
I 2

�

�
V1
a

a
�
I 1

� 1
a2

V1
�
I 1

� 1
a2

�
Z1

where
�
Z1 �

V1
�
I 1

is the load impedance as referred to the primary side. The equivalent circuit

for an ideal transformer is shown in Figure 4.2.
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Figure 4.2 The equivalent circuit of an ideal transformer

4.2 Practical Transformers
For a practical transformer, both primary and secondary windings have resistances,
denoted R1 and R2, and leakage fluxes, denoted �l1 and �l2 as shown in Figure 4.2, which
link their own windings through air and can be modelled by leakage reactances X1 and X2.

 

1lφ    2lφ  v2,e2 v1,e1 

i2 

N2 

i1 

N1 

mφ
i  

Load 

Figure 4.3 A practical transformer
The core of a practical transformer has finite permeability and core loss, so the primary
winding draws the excitation current from the source even though there is no load attached
to the secondary winding. The excitation current

�
I � is the sum of the core-loss current

�
I c

and the magnetization current
�
I m, that is,

�
I � �

�
I c �

�
I m

The core loss can be modelled by an equivalent core-loss resistance Rc and the
magnetization effect can be described by an equivalent magnetizing reactance Xm. If the
induced voltage across the primary winding is E1, then

�
I c �

E1
Rc
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�
I m �

E1
jXm

Note that the effective mutual flux created by
�
I � should be equal to the mutual flux in the

core. Assume that the reluctance of the core is �. Then, we have

� �
N1

�
I �

�
�

N1
�
I 1�N2

�
I 2

�

that is,
N1

�
I � � N1

�
I 1 � N2

�
I 2

Therefore, one gets
�
I 2

,
�
�
I 1 �

�
I � �

N2
N1

�
I 2

which implies that the relationship among the quantities E1, E2,
�
I 2

,
, and

�
I 2 can be modelled

by an ideal transformer, where
�
I 2

,
is the load current viewed from the primary side. The

equivalent circuit for a practical transformer is shown in Figure 4.4.
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2Î  

1̂V  
2̂V    2Z  

Figure 4.4 The equivalent circuit of a practical transformer
After the secondary is transformed to the primary side, the equivalent circuit becomes one
as shown in Figure 4.5.
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Figure 4.5 The equivalent circuit as viewed from the primary side
On the other hand, Figure 4.6 shows the equivalent circuit as viewed from the secondary
side.
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Figure 4.6 The equivalent circuit as viewed from the secondary side
In a well-designed transformer, R1, R2, X1, and X2 are kept as small as possible, and Rc and
Xm are kept as big as possible so that the transformer efficiency can be made as high as
possible. Since R1 and X1 are quite low, the voltage drop across them is also low in
comparison with the applied voltage. Without introducing any appreciable error, we can
assume that the voltage across the parallel branch is the same as the applied voltage. This
assumption allows us to move the parallel branch as shown in Figure 4.7.
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Figure 4.7 The approximate equivalent circuit as viewed from the primary

4.3 Voltage Regulation and Maximum Efficiency Criterion
The voltage regulation VR% is defined as

VR% �
V2NL�V2FL

V2FL
� 100

where V2NL and V2FL are effective values of no-load and full-load voltages at the secondary
terminals. For an ideal transformer, the voltage regulation is zero. The smaller the voltage
regulation, the better the transformer.
The input power to an transformer is calculated by

Sin � V1
�
I 1
�

P in � V1I1 cos�1

Qin � V1I1 sin�1

where cos�1 is the power factor of the transformer and �1 is the power factor angle of the
transformer which is the difference between the voltage phase angle and current phase
angle.
It follows from the approximate equivalent circuit shown in Figure 4.7 that the output power
is

Po � I2
� V2

� cos�2

where cos�2 is the power factor of the load and �2 is the power factor angle of the load.
The copper loss is
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Pcu � �I2
� �2�R1 � a2R2�

Recall that the core loss is determined by Pm � Kef2B2 � KhfBn. The flux in the transformer is
almost constant, so is B. Therefore, Pm is essentially constant. The input power can also
determined by

P in � Po � Pcu � Pm � I2
� V2

� cos�2 � �I2
� �2�R1 � a2R2� � Pm

The efficiency of the transformer is
� � Po

Pin
�

I2
� V2

� cos�2

I2
� V2

� cos�2� I2
� 2 R1�a2R2 �Pm

which is a function of I2
� . To get the load current I2�

� for the maximum efficiency, we
differentiate � with respect with I2

� and set it to be zero, that is,

d�
dIp

�
V2
� cos�2 I2

� V2
� cos�2� I2

� 2 R1�a2R2 �Pm �I2
� V2

� cos�2 V2
� cos�2�2I2

� R1�a2R2

I2
� V2

� cos�2� I2
� 2 R1�a2R2 �Pm

2 �
V2
� cos�2 Pm� I2

� 2 R1�a2R2

I2
� V2

� cos�2� I2
� 2 R1�a2R2 �Pm

2 �

which implies that
Pm � �I2

� �2�R1 � a2R2� � Pcu

The above equation indicates that the efficiency of a transformer is maximum when the
copper loss is equal to the core loss. The load current I2�

� for the maximum efficiency is
given by

I2�
� � Pm

R1�a2R2

4.4 Determination of Transformer Parameters
Suppose a step-down transformer is tested in this section.
The Short-Circuit Test
Short-circuit the low-voltage side, increase the voltage on the high-voltage side until the
rated current is reached on the low-voltage side, and measure the voltage, current, and
power on the high-voltage side. The equivalent circuit for the short-circuit test is shown in
Figure 4.8.
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2
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2
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scÎ 22
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a
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Figure 4.8 The equivalent circuit for the short-circuit test
Define Zeq � Req � jXeq � R1 � a2R2 � j�X1 � a2X2�. Then, it follows from the equivalent circuit
that

Req � R1 � a2R2 � Psc

Isc
2

|Zeq | � Vsc
Isc

Xeq � X1 � a2X2 � |Zeq |2 � Req
2

For most transformers, resistances and reactances can be separated by
R1 � a2R2 � 0. 5Req
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X1 � a2X2 � 0. 5Xeq

The Open-Circuit Test
Open-circuit the high-voltage side, apply the rated voltage to the low-voltage side, and
measure the voltage, current, and power on the low-voltage side. The equivalent circuit for
the open-circuit test is shown in Figure 4.9.

 

2/ ajX m  

2jX  
2R  

ocÎ
 ocV̂  

2
1 / ajX2

1 / aR  

2/ aRc

Figure 4.9 The equivalent circuit for the open-circuit test
Let Z� � 1

1
Rc/a2 � 1

jXm/a2

. Then it follows from the equivalent circuit that

Rc/a2 �
Voc

2

Poc
� Rc � a2 Voc

2

Poc

|Z� | � Voc
Ioc

Note that 1
Z�

� 1
Rc/a2 � 1

jXm/a2 , i.e. 1
Z�

2
� 1

Rc/a2

2
� 1

Xm/a2

2
. As a result, we have

Xm/a2 � 1

1
Z�

2
� 1

Rc/a2

2
� Xm � a2

1
Z�

2
� 1

Rc/a2

2

Example 4.1 A 50kVA 2400:240V transformer is tested and the following data were
recorded: the short-circuit test readings with the low-voltage side short-circuited are 48V,
20.8A, and 617W; the open-circuit test readings with the high-voltage side open-circuited
are 240V, 5.41A, and 186W. Find the transformer parameters, the efficiency, and the
voltage regulation at full load and 0.8 power factor lagging. Determine the load current for
the maximum efficiency.
Solution: The transformation ratio is a �

V1
V2

� 2400
240 � 10. The approximate equivalent

circuit is shown in Figure 4.7. From the short-circuit test (see Figure 4.8),
Vsc � 48V, Isc � 20. 8A, Psc � 617W

Req � Psc

Isc
2 � 617

20.82 � 1. 426 1�

|Zeq | � Vsc
Isc

� 48
20.8 � 2. 307 7�

Xeq � |Zeq |2 � Req
2 � 2. 307 72 � 1. 426 12 � 1. 814 3�

Therefore,
R1 � 0. 5Req � 0. 5 � 1. 426 1 � 0. 713 05�
a2R2 � 0. 5Req � 0. 5 � 1. 426 1 � 0. 713 05�
X1 � 0. 5Xeq � 0. 5 � 1. 814 3 � 0. 907 15�
a2X2 � 0. 5Xeq � 0. 5 � 1. 814 3 � 0. 907 15�

For the open-circuit test, the equivalent circuit is shown in Figure 4.9. From the open-circuit
test, Voc � 240V, Ioc � 5. 41A, Poc � 186W. Therefore,

Rc � a2 Voc
2

Poc
� 102 � 2402

186 � 30968�
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|Z� | � Voc
Ioc

� 240
5.41 � 44. 362�

Xm � a2

1
Z�

2
� 1

Rc/a2

2
� 102

1
44. 362

2
� 1

30968/102

2
� 4482. 4�

The full load current is
I2 �

S2
V2

� 50000
240 � 208A

The load current referred to the primary side is
I2
� � 1

a I2 � 1
10 208. 33 � 20. 8A

The core loss is the same as the input power in the open-circuit test, that is,
Pm � 168W

The copper loss is
Pcu � �I2

� �2�R1 � a2R2� � 20. 82 � 1. 426 1 � 617W
The output power at full load is

Po � V2I2 cos�2 � 240 � 208 � 0. 8 � 39936W
The input power at full load is

P in � Po � Pcu � Pm � 39936 � 617 � 168 � 40721W
The efficiency at full load is

� � Po
Pin

� 100 � 39936
40721 � 100 � 98. 0%

The load voltage phasor is chosen as a reference, that is, V2 � 240�0�V and
V2

�

� aV2 � 2400�0�V. Then, the load current phasor is
�
I 2 � I2�cos�1�0. 8� � 208� � 36. 9�A

The load current phasor referred to the primary side is
�
I 2
�
� 1

a
�
I 2 � 1

10 208� � 36. 9� � 20. 8� � 36. 9� � 20. 8�0. 8 � j0. 6�A
It follows from Figure 4.6 that

V1 � V2

�

�
�
I 2
�
�R1 � a2R2 � j�X1 � a2X2��

� 2400 � 20. 8�0. 8 � j0. 6��1. 426 1 � j1. 814 3� � 2446. 3 � j12. 392
� 12. 3922 � 2446. 32 � 180

� tan�1 12. 392
2446. 3 � 2446. 3� 0. 29�V

Now let us find the no load output voltage corresponding to V1 � 2446. 3� 0. 29�V by using
the approximate equivalent circuit. It is obvious that
V2

� � V1 � 2446. 3 and V2 � V2
� /a � 244. 63V. Therefore, the voltage regulation is

VR% � 244.6 3�240
240 � 100 � 1. 93%

The load current for the maximum efficiency viewed from the primary side is
I2�
�

� Pm

R1�a2R2
� 168

1. 426 1 � 10. 854A

and the load current for the maximum efficiency is
I2� � aI2�

�

� 108. 54A

4.5 Per-Unit Computations
quantities such as voltage, current, power, reactive power, voltamperes, resistance,
reactance, and impedance can be translated to and from per-unit form as follows:

Quantity in per-unit � Actual quantity
Base Value of quantity

For a single phase system, the base values must obey the electric circuit laws, that is,
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Pbase, Qbase, VAbase � VbaseIbase

Rbase, Xbase, Zbase �
Vbase
Ibase

1. Select a VA base and a base voltage at some point in the system.
2. Convert all quantities to per-unit.
3. Perform a standard electrical analysis with all quantities in per-unit.
4. Convert all quantities back to real units by multiplying their per-unit values by their
corresponsing base values.
Note that the turns ratio of an ideal transformer in per unit is one.
Example 4.2: A single-phase generator with an internal impedance Zg � 23 � j92m� is
connected to a load via a 46kVA, 230/2300V, step-up tansformer, a short transmission line
and a 46kVA, 2300/115V, sstep-down transformer. The impedance of the transmission line
is Ztl � 2. 07 � j4. 14�. The parameters of step-up and step-down transformers are:
Z1g � 23 � j69m�, Z�g � 138 � j69�, Z2g � 2. 3 � j6. 9�, Z1l � 2. 33 � j6. 9�,
Z�l � 11. 5 � j9. 2k�, Z2l � 5. 75 � j17. 25m�.
Determine (a) the generator voltage, (b) the generator current, and (c) the overall efficiency
of the system at full load and 0.866 pf lagging.
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V

lÎ

Figure 4.10 The circuit for Example 4.2
Solution:The equivalent circuit of the system incorperating ideal transformers is given in
Figure 4.10.
For the generator side, choose the base values Vbg � 230V and Sbg � 46000VA. Then, we
have

Ibg �
Sbg

Vbg
� 46000

230 � 200A

Zbg �
Vbg

Ibg
� 230

200 � 1. 15�

The per-unit impedance of the generator is
Zg,pu �

Zg

Zbg
�

0.023�j0.092
1. 15 � 0. 02 � j0. 08

The per-unit parameters on the primary side of the step-up transformer are
Z1g,pu �

Z1g

Zbg
�

0.023�j0.069
1. 15 � 0. 02 � j0. 06

Z�g,pu �
Z�g

Zbg
�

138�j69
1. 15 � 120 � j60

For the transmission line side, choose the base values Vbtl � 2300V and Sbtl � 46000VA.
Then, we have

Ibtl �
Sbtl
Vbtl

� 46000
2300 � 20A

Zbtl �
Vbtl
Ibtl

� 2300
20 � 115�

The per-unit impedance on the secondary side of the step-up transformer is
Z2g,pu �

Z2g

Zbtl
�

2.3�j6.9
115 � 0. 02 � j0. 06

The per-unit impedance of the transmission line is
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Ztl,pu �
Z tl
Zbtl

�
2.07�j4.14

115 � 0. 018 � j0. 036

The per-unit parameters on the primary side of the step-down transformer are
Z1l,pu �

Z1l
Zbtl

�
2.3�j6.9

115 � 0. 02 � j0. 06

Z�l,pu �
Z�l

Zbtl
�

11500�j9200
115 � 100 � j80

For the load side, choose the base values Vbl � 115V and Sbl � 46000VA. Then, we have
Ibl �

Sbl
Vbl

� 46000
115 � 400A

Zbl �
Vbl
Ibl

� 115
400 � 0. 2875�

The per-unit impedance on the secondary side of the step-down transformer is
Z2l,pu �

Z2l
Zbl

�
0.00575�j0.01725

0.2875 � 0. 02 � j0. 06

The per-unit load voltage and per-unit load current are
V l,pu �

Vl
Vbl

� 115
115 � 1

Il,pu �
Il
Ibl

�

Sl
Vl

400 �
46000

115
400 � 1

The load voltage and current phasors are

V l,pu � 1�0�

�
I l,pu � 1� � 30�
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Figure 4.11 The equivalent circuit in per-unit for Example 4.2
The equivalent circuit of the system in per unit is shown in Figure 4.11. It follows from this
equivalent circuit that

E1l,pu �
�
I l,puZ2l,pu � V l,pu � �1� � 30���0. 02 � j0. 06� � 1�0�

� cos �
6 � j sin �

6 �0. 02 � j0. 06� � 1 � 1. 047 � j0. 042
�
I tl,pu �

�
I l,pu �

E1l,pu

Z�l,pu
� 1� � 30� �

1.047�j0.042
100�j80 � cos �

6 � j sin �
6 �

�1.047�j0.042��100�j80�
1002�802 �

0. 872 � j0. 505

E1g,pu �
�
I tl,pu�Z2g,pu � Ztl,pu � Z1l,pu� � E1l,pu

� �0. 872 � j0. 505��0. 02 � j0. 06 � 0. 018 � j0. 036 � 0. 02 � j0. 06� � 1. 047 � j0. 042
� 1. 176 � j0. 149

�
I g,pu �

�
I tl,pu �

E1g,pu

Z�g,pu
� 0. 872 � j0. 505 �

1. 176�j0.149
120�j60 � 0. 872 � j0. 505 �

�1. 176�j0.149��120�j60�
1202�602

� 0. 880 � j0. 508

Vg,pu �
�
I g,pu�Zg,pu � Z1g,pu� � E1g,pu � �0. 880 � j0. 508��0. 02 � j0. 08 � 0. 02 � j0. 06� � 1.

176 � j0. 149
� 1. 282 � j0. 252
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(a) Therefore, the generator voltage is

Vg � VbgVg,pu � 230�1. 282 � j0. 252� � 294. 86 � j57.
96 � 294. 862 � 57. 962 � tan�1 57. 96

294. 86
180
�

� 300. 5�11. 1�V
(b) The generator current is

�
I g � Ibg

�
I g,pu � 200�0. 880 � j0. 508� � 176. 0 � j101.

6 � 176. 02 � 101. 62 � tan�1 �101. 6
176.0

180
�

� 203. 2� � 30�A
(c) On a per-unit basis, the rated power output at a 0.866 pf lagging is

Po,pu � V l,pu
�
I l,pu cos� � 0. 866

The per-unit input power from the generator is

P in,pu � Re Vg,pu
�
I g,pu
�

� Re��1. 282 � j0. 252��0. 880 � j0. 508�� � 1. 000 2

Thus, the efficiency is
� �

Po,pu

Pin,pu
� 100 � 0.866

1. 000 2 � 100 � 86. 6%

4.6 Autotransformers
An ideal two-winding transformer can be connected as an ideal autotransformer. There are
four possible ways to connect a two-winding transformer as an autotransformer, as shown
in Figures 4.12-4.15.
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Figure 4.12 A step-down authotransformer
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Figure 4.13 A step-down authotransformer
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2Î  

1̂I  

aI 2
ˆ  

aI1̂  
2N  

1N  

Figure 4.14 A step-up autotransformer
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Figure 4.15 A step-up autotransformer
The following examples show how to calculate the primary winding voltage and current,
V1a and

�
I 1a, the secondary winding voltage and current, V2a and

�
I 2a, the ratio of

transformation aT, and the apparent power input and output,
�
S ina and

�
Soa.

Example 4.3: A 24kVA 2400/240V two-winding transformer is to be connected as an
autotransformer. For each possible combination, determine the primary winding voltage and
current, V1a and I1a, the secondary winding voltage and current, V2a and I2a, the ratio of
transformation aT, and the apparent power input and output, Sina and Soa under ideal
conditions.
Solution: For the given information for the two-winding transformer, we get

E1 � V1 � 2400V, E2 � V2 � 240V, a �
V1
V2

� 10, So � 24000VA, I2 � So
V2

� 100A, I1 �
I2
a � 10A

For the autotransformer shown in Figure 4.12,
V1a � E1a � E1 � E2 � 2640V, V2a � E2a � E2 � 240V, aT �

V1a
V2a

� 11, I1a � I1 � 10A, I2a � I1 � I

Sina � V1aI1a � 2640 � 10 � 26400VA, Soa � V2aI2a � 240 � 110 � 26400VA
The nominal rating of the autotransformer in Figure 4.12 is 26.4kVA, 2640/240V.
For the autotransformer shown in Figure 4.13,
V1a � E1a � E2 � 240V, V2a � E2a � E1 � E2 � 2640V, aT �

V1a
V2a

� 0. 091, I1a � I1 � I2 � 110A, I2a

Sina � V1aI1a � 240 � 110 � 26400VA, Soa � V2aI2a � 2640 � 10 � 26400VA
The nominal rating of the autotransformer in Figure 4.13 is 26.4kVA, 240/2640V.
For the autotransformer shown in Figure 4.14,
V1a � E1a � E1 � E2 � 2640V, V2a � E2a � E1 � 2400V, aT �

V1a
V2a

� 2640
2400 � 1. 1, I1a � I2 � 100A,

Sina � V1aI1a � 2640 � 100 � 264000VA, Soa � V2aI2a � 2400 � 110 � 264000VA
The nominal rating of the autotransformer in Figure 4.14 is 264kVA, 2640/2400V.
For the autotransformer shown in Figure 4.15,
V1a � E1a � E1 � 2400V, V2a � E2a � E1 � E2 � 2640V, aT �

V1a
V2a

� 2400
2640 � 0. 91, I1a � I1 � I2 � 110A

Sina � V1aI1a � 2400 � 110 � 264000VA, Soa � V2aI2a � 2640 � 100 � 264000VA
The nominal rating of the autotransformer in Figure 4.15 is 264kVA, 2400/2640V.
Note that the nominal rating of the autotransformer in Figure 4.14 or 4.15 is 10 times the
nominal rating of the two-winding transformer.
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Example 4.4: A 720VA 360/120V two-winding transformer has the following parameters:
R1 � 18. 9�, X1 � 21. 6�, R2 � 2. 1�, X2 � 2. 4�, Rc1 � 8. 64k�, Xm1 � 6. 84k�. The
transformer is connected as a 120/480V step-up autotransformer. If the autotransformer
delivers the full load at 0.707 pf leading, determine its efficiency and voltage regulation.

 

aV1̂  

2Ê  

1Ê  

aV2
ˆ  

LaZ  

2Î  

2cR  

aI 2
ˆ  

aI 2
ˆ′  

2N  

1N  

1R  

2R  

1jX  

2jX  2mjX  

aI1̂  

aI φ̂  

caÎ  
maÎ  

Figure 4.16 The approximate equivalent circuit of a
Solution: The turns ration of the two-winding transformer is a � 360

120 � 3 and the turns ratio
of the autotransformer is aT � 120

480 � 0. 25. The equivalent core-loss resistance and the
magnetizing reactance on the secondary side of the two-winding transformer is

Rc2 �
Rc1

a2 � 8640
32 � 960�, Xm2 �

Xm1

a2 � 6840
32 � 760�

The approximate equivalent circuit of the autotransformer is shown in Figure 4.16.

Assume that V2a � 480�0�V. The full load current is
I2a � I1 �

S in
V1

� 720
360 � 2A, so

�
I 2a � 2�45�A � 2 cos 45 �

180 � j2 sin 45 �
180

and
�
I 2a

,
�

�
I 2a
aT

� 2
0.25 � 8�45�A � 8 cos 45 �

180 � j8 sin 45 �
180 .

Hence,
�
I 2 �

�
I 2a

,
�
�
I 2a � 8�45� � 2�45� �

8 cos 45 �
180 � j8 sin 45 �

180 � 2 cos 45 �
180 � j2 sin 45 �

180 � 6 cos 45 �
180 � j6 sin 45 �

180

Note that E1 � aE2 � 3E2. Then, it follows from KVL that

E1 �
�
I 2a�R1 � jX1� � V2a �

�
I 2�R2 � jX2� � E2 � 0
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or

E2 � 1
4

�
I 2a�R1 � jX1� � V2a �

�
I 2�R2 � jX2�

� 1
4 2 cos 45 �

180 � j2 sin 45 �
180 �18. 9 � j21. 6� � 480 � 6 cos 45 �

180 � j6 sin 45 �
180

� 119. 36 � j9. 545 9V
Thus,

V1a � E2 �
�
I 2�R2 � jX2� � 119. 36 � j9. 545 9 � 6 cos 45 �

180 � j6 sin 45 �
180 �2. 1 � j2. 4�

� 118. 09 � j28. 638 � 118. 092 � 28. 6382 � tan�1 28. 638
118. 09

180
� � 121. 51�13. 6�V

On the other hand,
�
I 1a �

�
I �a �

�
I 2a

,
�

V1a
Rc2

�
V1a
jXc2

�
�
I 2a

,
� V1a

1
Rc2

� 1
jXc2

�
�
I 2a

,

� �118. 09 � j28. 638� 1
960 � 1

j760 � 8 cos 45 �
180 � j8 sin 45 �

180

� �118. 09 � j28. 638� 1
960 � j 1

760 � 8 cos 45 �
180 � j8 sin 45 �

180

� 5. 817 6 � j5. 531 3
Therefore,

Po � Re V2a
�
I 2a
�

� Re �480� 2 cos 45 �
180 � j2 sin 45 �

180 � 678. 82W

P in � Re V1a
�
I 1a
�

� Re��118. 09 � j28. 638��5. 817 6 � j5. 531 3�� � 845. 41W

� � Po
Pin

� 100 � 678. 82
845. 41 � 100 � 80. 3%

If we remove the load, the no-load voltage at the secondary of the autotransformer is
V2aNL �

V1a
aT

� 121. 51
0.25 � 486. 04V

We now can compute the voltage regulation as
VR% �

V2aNL�V2aFL
V2aFL

� 100 � 486. 04�480
480 � 100 � 1. 24%

4.7 Three-Phase Transformers
The three windings on either side of a three-phase transformer can be connected either in Y
or in �. Therefore, a three-phase transformer can be connected in four possible ways: Y/Y,
�/�, �/Y, Y/�, as shown in Figures 17-20.

 

1A  2A  

1B  2B  1C  2C  

1a  2a  

1b  2b  
1c  2c  

1n  2n  

Figure 4.17 Y-Y connection
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1a  

1A  

1B  

1b  

1C  

1c  

2a  

2A  

2B  

2b  

2C  

2c  

Figure 4.18 � � � connection

 

1a  

1A  

1B  

1b  

1C  

1c  

2A  

2B  2C  

2a  

2b  
2c  

2n  

Figure 4.19 � � Y connection

 

2a  

2A  

2B  

2b  
1n  

 

1A  

1B  1C  

1a  

1b  
1c  

2C  

2c  

Figure 4.20 Y-�connection
For simplicity, we assume that the three-phase transformer delivers a balanced load. Under
steady-state conditions, a three-phase transformer can be analyzed by (a) transforming a
�-connected winding to a Y-connected winding using �-to-Y transformation, (b) drawing a
per-phase equivalent circuit, and (c) computing quantities for the per-phase equivalent
circuit.
�-to-Y transformation: If Z� is the impedance in a �-connected winding, the equivalent
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impedance ZY in a Y-connected winding is
ZY � 1

3 Z�

and

Van �
Vab

3
� � 30�

�
I A � � 3

�
I A� � 30�

 

a  

A  

B  
b  

n  

 

A′  

B′  C ′  

a  

b  c  

C  

c  

Figure 4.21 � � Y transformation
Example 4.5: A three-phase transformer is assembled by connecting three 720VA
360/120V single-phase transformers. The constants for each transformer are RH � 18. 9�,
XH � 21. 6�, RL � 2. 1�, XL � 2. 4�, RcH � 8. 64k�, XmH � 6. 84k�. For each of the four
configurations, determine the nominal voltage and power ratings of the three-phase
transformer. Draw the per-phase equivalent circuit for each configuration.

 

1

ˆ
AE  

2

ˆ
AE  

1mAjX  
1cAR  

1

ˆ
cAI  

1

ˆ
mAI  

1

ˆ
AIφ  

2

ˆ
AI ′  

2AjX  
2AR  

1AjX  
1AR  

1

ˆ
AI  

a  

2

ˆ
AI  

11

ˆ
naV  

22

ˆ
naV     2Z  

Solution: The power rating of the three-phase transformer for each configuration is
S3� � 3 � 720 � 2160VA.
(a) Y-Y connection: The nominal values of the line voltages on the primary and the
secondary sides are

V1L � 3 Va1n1 � 3 � 360 � 623. 54V
V2L � 3 Va2n2 � 3 � 120 � 207. 85V

Thus, the nominal ratings of the three-phase transformer are 2.16kVA 624/208V Y/Y
connection. The per-phase equivalent circuit is shown in Figure 4.22 with the following
parameters:

a � 360
120 � 3, RA1 � RH � 18. 9�, XA1 � XH � 21. 6�, RA2 � RL � 2. 1�, XA2 � XL � 2. 4�,

RcA1 � RcH � 8. 64k�, XmA1 � XmH � 6. 84k�
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(b) �-� connection: The nominal values of the line voltages on the primary and the
secondary sides are

V1L � Va1b1 � 360V
V2L � Va2b2 � 120V

Thus, the nominal ratings of the three-phase transformer are 2.16kVA 360/120V �/�
connection. The per-phase equivalent circuit is shown in Figure 4.22 with the following
parameters:

a �
360

3
120

3

� 3, RA1 �
RH
3 � 18.9

3 � 6. 3�, XA1 �
XH
3 � 21.6

3 � 7. 2�, RA2 �
RL
3 � 2.1

3 � 0. 7�,

XA2 �
XL
3 � 2.4

3 � 0. 8�, RcA1 �
RcH

3 � 8.64
3 � 2. 88k�, XmA1 �

XmH
3 � 6.84

3 � 2. 28k�
(c) �-Y connection: The nominal values of the line voltages on the primary and the
secondary sides are

V1L � Va1b1 � 360V
V2L � 3 Va2n2 � 3 � 120 � 207. 85V

Thus, the nominal ratings of the three-phase transformer are 2.16kVA 360/208V �/Y
connection. The per-phase equivalent circuit is shown in Figure 4.22 with the following
parameters:

a �
360

3

120 � 1. 732 , RA1 �
RH
3 � 18.9

3 � 6. 3�, XA1 �
XH
3 � 21.6

3 � 7. 2�, RA2 � RL � 2. 1�,
XA2 � XL � 2. 4�, RcA1 �

RcH
3 � 8.64

3 � 2. 88k�, XmA1 �
XmH

3 � 6.84
3 � 2. 28k�,

EA1 � aEA2� � 30�,
�
I A2

,
� 1

a
�
I A2� � 30�

(d) Y-� connection: The nominal values of the line voltages on the primary and the
secondary sides are

V1L � 3 Va1n1 � 3 � 360 � 623. 54V
V2L � Va2b2 � 120V

Thus, the nominal ratings of the three-phase transformer are 2.16kVA 624/120V Y/�
connection. The per-phase equivalent circuit is shown in Figure 4.22 with the following
parameters:

a � 360
120

3

� 5. 196 , RA1 � RH � 18. 9�, XA1 � XH � 21. 6�, RA2 �
RL
3 � 2.1

3 � 0. 7�,

XA2 �
XL
3 � 2.4

3 � 0. 8�, RcA1 � RcH � 8. 64k�, XmA1 � XmH � 6. 84k�, EA1 � aEA2�30�,
�
I A2

,
� 1

a
�
I A2�30�

Example 4.6: Three single-phase transformers, each rated at 12kVA 120/240V 60Hz are
connected to form a three-phase step-up Y/� connection. The parameters of each
transformer are RH � 133. 5m�, XH � 201m�, RL � 39. 5m�, XL � 61. 5m�, RcL � 240�,
XmL � 290�. What are the nominal voltage, current, and power ratings of the three-phase
transformer. When it delivers the rated load at rated voltage and 0.8 pf lagging, determine
the line voltages, the line currents, and the efficiency of the three-phase transformer.
Solution: The nominal values of the three-phase transformer are

S3� � 3S1� � 36kVA
V1� � Va1n1 � 120V
V1L � 3 Va1n1 � 3 � 120 � 208V
V2� � Va2b2 � 240V
V2L � Va2b2 � 240V

For the equivalent Y/Y connection, the nominal values of the three-phase transformer are
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V1� � Va1n1 � 120V
V1L � 3 Va1n1 � 3 � 120 � 208V
V2� �

Va2b2

3
� 240

3
� 138. 56V

V2L � Va2b2 � 240V
Thus, the nominal ratings of the three-phase transformer are 36kVA 208/240V Y/�
connection. The per-phase equivalent circuit is shown in Figure 4.22 with the following
parameters:

a � 120
138. 56 � 0. 866 , RA1 � RL � 39. 5m�, XA1 � XL � 61. 5m�, RA2 �

RH
3 � 133.5

3 � 44.
5m�, XA2 �

XH
3 � 201

3 � 67m�, RcA1 � RcL � 240�, XmA1 � XmL � 290�
Assuming the rated load voltage on a per-phase basis for the equivalent Y/Y connection as
the reference, then

Va2n2 � 138. 56�0�V
For a 0.8 lagging power factor, the load current is

�
I A2 �

S1�

V2�
� � cos�1�0. 8� � 12000

138.56 � � cos�1�0. 8� � 86. 6� � 36. 87�A

The per-phase load current in the primary winding is
�
I A2

,
�

�
I A2
a �30� � 86. 6

0.866 ��30� � 36. 87�� � 100� � 6. 87�A
The per-phase voltage induced in the equivalent Y-connected secondary winding is

EA2 � Va2n2 �
�
I A2�RA2 � jXA2 � � 138. 56 � 86. 6� � 36. 87��0. 0445 � j0. 067�

� 138. 56 � 86. 6�0. 8 � j0. 6��0. 0445 � j0. 067�
� 145. 12 � j2. 329 5 � 145. 122 � 2. 329 52 � tan�1 2. 329 5

145. 12
180
� � 145. 147�0. 92�V

The induced emf in the Y-connected primary winding is

EA1 � aEA2�30� � �0. 866�30���145. 147�0. 92�� � 0. 866 � 145.
147��0. 92� � 30�� � 125. 7�30. 92�V
The excitation current is

�
I �A1 �

EA1
1

1
RcA1

� 1
jXmA1

� EA1
1

RcA1
� 1

jXmA1
� �125. 7�30. 92�� 1

240 � 1
j290

� 125. 7 cos 30. 92 �
180 � j125. 7 sin 30. 92 �

180
1

240 � j 1
290 � 0. 672 04 � j0. 102 72A

Thus, the primary current is
�
I A1 �

�
I �A1 �

�
I A2

,
� 0. 672 04 � j0. 102 72 � 100� � 6. 87�

� 0. 672 04 � j0. 102 72 � 100 cos �6. 87 �
180 � j sin �6. 87 �

180 � 99. 954 � j12. 064A
and the primary phase voltage is

Va1n1 � EA1 �
�
I A1�RA1 � jXA1 � � 125. 7�30. 92� � �99. 954 � j12. 064��0. 0395 � j0. 0615�

� 125. 7 cos 30. 92 �
180 � j125. 7 sin 30. 92 �

180 � �99. 954 � j12. 064��0. 0395 � j0. 0615�

� 112. 52 � j70. 26 � 112. 522 � 70. 262 � tan�1 70. 26
112. 52

180
�

� 132. 65�31. 982�V
The line voltage on the primary side is

V1L � 3 Va1n1�30� � 132. 65 3 �61. 982� � 229. 76�60. 352�V
The total input power is

P in � 3 Re Va1n1

�
I A1

�
� 3 Re��112. 52 � j70. 26��99. 954 � j12. 064�� �
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3 Re�10399 � j8380. 2� � 3 � 10399 � 31197W
The total output power is

Po � 3 Re Va2b2

�
I A2

�
� 3 Re��138. 56�0���86. 6� � 36. 87��� �

3 Re�138. 56 � 86. 6�0. 8 � j0. 6��
� 3 Re�9599. 4 � j7199. 6� � 3 � 9599. 4 � 28798W

Hence, the efficiency of the three-phase transformer is
� � Po

Pin
� 100 � 28798

31197 � 100 � 92. 3%
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Chapter 5 Synchronous Machines
The basic components of a synchronous machine are the stator and rotor. The field winding
is placed on the rotor and so called the rotor winding. A DC source is connected to the field
winding through slip rings and generates a magnetic flux in the machine. Three-phase
armature windings are mounted on the stator spatially displaced by 120 degree electrical
from one another and so referred to as the stator windings. A three-phase AC source is
applied to the armature winding in a synchronous motor to drive a mechanical load and a
three-phase AC power is output from the armature winding in a synchronous generator
when it is driven by a prime mover.
Two type of rotors are used in the design of synchronous machines, the cylindrical rotor and
a salient-pole rotor.
Balanced three-phase currents generate a rotating magnetic field with a constant magnitude
and revolving around the periphery of the rotor at a synchronous speed defined by

�s �
4�f
P

where f is the frequency of the AC currents and P is the number of poles in the machine.
The induced voltage of a synchronous machine is directly proportional to the product of the
flux � in the machine and the speed �s of the machine, that is, Ea � k��s.

5.1 Synchronous Generators
A generator is driven by a mechanical source, a prime mover, to turn at the synchronous
speed. When a DC source is applied to the field winding, three-phase AC voltages are
induced in the armature windings.

5.1.1 Synchronous Generators with a Cylindrical Rotor
Figure 5.1 shows an equivalent circuit for a synchronous generator with a cylindrical rotor,
where R f, Lf, V f, and If are the field resistance, inductance, voltage, and current, Xs is the
synchronous reactance, Ra, Va, and

�
I a are the armature resistance, voltage, and current, Ea

is the generated voltage (induced voltage). It follows from KVL that

Ea � Va �
�
I aRa � j

�
I aXs

 

fI  

fV  

fR  

fL  

sjX  
aR  

aÎ  

aV̂  aÊ  

Figure 5.1 The per-phase equivalent circuit of a
Figure 5.2 shows the phasor diagram for a synchronous generator with a lagging load. � is
the power factor angle and � is the torque angle. The torque angle is negative for the
synchronous generator.
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aÎ  

aV̂  

aa RÎ  

sa XIj ˆ  

aÊ  

δ  
θ  

Figure 5.2 The phasor diagram for a generator
1. The resistance Test: This test is conducted to measure the armature winding resistance
of a synchronous generator by measuring the resistance from line to line, RL, when it is at
rest and the field winding is open. If the generator is Y-connected, the per-phase resistance
is Ra � 0. 5RL. On the other hand, for a �-connected generator, Ra � 1. 5RL.
2. The Open-Circuit Test (No-Load Test): This test is performed by driving the generator
at its rated speed while the armature winding is left open. The open-circuit voltage between
any two pair of terminals of the armature windings is recorded when the field current is
varied from zero to its rated value. The graph of the per-phase open-circuit voltage versus
the field current is referred to as the open-circuit characteristic of a generator.
3. The Short-Circuit Test: This tested is carried out by driving the generator at its rated
speed when the terminals of the armature winding are shorted. The line current of the
armature winding is recorded when the field current is gradually increased. The graph of the
per-phase short-circuit current versus the field current is called the short-circuit
characteristic of a generator.
4. Calculation of the Synchronous Reactance: Let Ifr be the field current which gives the
rated per-phase voltage �Vaoc� from the open-circuit test and Iasc be the phase current
corresponding to the field current Ifr from the short-circuit test. Then, the synchronous
reactance is calculated by

|Zs | � Vaoc
Iasc

(Synchronous impedance Zs � Ra � jXs)

Xs � |Zs |2 � Ra
2
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s co c IV ,  
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a s cI  
fI  
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Figure 5.3 OCC and SCC of a synchronous machine
5. The Developed Torque and Efficiency:
The output power of a synchronous generator is

Po � 3VaIa cos�
The copper loss in the armature winding is

Pcu � 3Ia
2Ra

The developed power is
Pd � Po � Pcu � 3VaIa cos� � 3Ia

2Ra

If Ra � 0, then
Pd � 3VaEa sin�

Xs

The developed torque is
�d �

Pd
�s

The input power to the field winding is
P f � V fIf

If Pr is the rotational loss and Pstray is the stray loss, then the input power P in�� Pmech � P f� is
P in � Po � Pcu � Pr � Pstray � P f � 3VaIa cos� � 3Ia

2Ra � Pr � Pstray � P f

The core loss Pc � Pr � Pstray � P f does not change much with the load change and can be
considered as constant. The efficiency of the generator

� � Po
Pin

� 3VaIa cos�
3VaIa cos��3Ia

2Ra�Pc

reaches its maximum when
3Ia

2Ra � Pc

As a result, the generator reaches its maximum efficiency when the load current is
Ia � Pc

3Ra

6. The Voltage Regulation: The voltage regulation of a synchronous generator is defined
as the ratio of the change in the terminal voltage from no load to full load, that is,

VR% �
VaNL�VaFL

VaFL

where VaNL and VaFL are the no-load voltage and the full-load voltage of the synchronous
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generator.
Example 5.1: A 500kVA, 2300V, three-phase, Y-connected, synchronous generator is
operated at its rated speed to obtain its rated no-load voltage. When a short-circuit is
established, the phase current is 150A. The average resistance of each phase is 0.5�. The
core loss is assumed to be 20kW. Determined the synchronous reactance per phase.
Calculate the efficiency and voltage regulation when the generator delivers the rated load at
its rated voltage and 0.8 pf lagging.
Solution:
The open-circuit phase voltage is Vaoc � 2300/ 3 � 1327. 9V
The short-circuit phase current is Iasc � 150A
Therefore the synchronous impedance is |Zs | � Vaoc

Iasc
� 1327. 9

150 � 8. 85�

Thus the synchronous reactance is Xs � |Zs |2 � Ra
2 � 8. 852 � 0. 52 � 8. 84�

The rated phase voltage is Va � 2300
3

� 1327. 9V and it is assumed that Va � 1327. 9�0�V

The rated load current is Ia � 500000
3�1327.9 � 125. 51A and

�
I a � 125. 51� � 36. 87�A

It follows from the per-phase equivalent circuit that

Ea � Va �
�
I aZs � 1327. 9�0� � 125. 51� � 36. 87��0. 5 � j8. 84�

� 1327. 9 � 125. 51�0. 8 � j0. 6��0. 5 � j8. 84� � 2043. 8 � j849. 95
� 2043. 82 � 849. 952 � tan�1 849. 95

2043. 8
180
� � 2213. 5�22. 6�V

Thus, the no-load phase voltage is VaNL � Ea � 2213. 5V and the full-load phase voltage is
VaFL � Va � 1327. 9V, which implies that

VR% � 2213. 5�1327. 9
1327. 9 � 100 � 66. 7%

The output power of the synchronous generator is
Po � 3VaIa cos� � 3 � 1327. 9 � 125. 51 � 0. 8 � 400000W

The copper loss in the armature winding is
Pcu � 3Ia

2Ra � 3 � 125. 512 � 0. 5 � 23629W
The input power is

P in � Po � Pcu � Pc � 400000 � 23629 � 20000 � 4436 30W
Thus, the efficiency of the generator is

� � Po
Pin

� 100 � 400000
4436 30 � 100 � 90. 2%

5.1.2 Synchronous Generators with a Salient-Pole Rotor
Unlike a cylindrical rotor synchronous generator, a salient-pole synchronous generator has
a large air-gap in the region between the poles than in the region just above the poles, as is
evidenced from Figure 5.3. Therefore, the reluctances of the two regions in a salient-pole
generator differ significantly.
In order to account for this difference, the synchronous reactance is split into two
reactances. The component of the synchronous reactance along the pole-axis (the d-axis)
is called the direct-axis synchronous reactance Xd and the other component along the axis
between the poles (the q-axis) is referred to as the quadrature-axis synchronous reactance
Xq.
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Figure 5.4 A salient-pole synchronous
The armature current

�
I a is also resolved into two components: the direct-axis component

�
I d

and quadrature-axis component
�
I q. Then,

�
I a �

�
I d �

�
I q. The direct-axis component

�
I d

produces the field along the d-axis and lags Ea by 90� and the quadrature-axis component
�
I q produces the field along the q-axis and is in phase with Ea.

Let Ea be the per-phase generated voltage under no-load and Ed and Eq be the induced
emfs in the armature winding by the currents

�
I d and

�
I q, respectively. Then Ed and Eq can

be expressed in terms of Xd and Xq as

Ed � �j
�
I dXd and Eq � �j

�
I qXq

The per-phase terminal voltage of the generator is

Va � Ea � Ed � Eq �
�
I aRa � Ea � j

�
I dXd � j

�
I qXq �

�
I aRa

� Ea � j
�
I dXd � j

�
I a �

�
I d Xq �

�
I aRa � Ea � j

�
I d�Xd � Xq� � j

�
I aXq �

�
I aRa

� Ea

,
� j

�
I aXq �

�
I aRa

where Ea

,
� Ea � j

�
I d�Xd � Xq�, as shown in Figure 5.4.

 

qÊ  
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Figure 5.5 Equivalent circuits of a salient-pole synchronous generator
The phasor diagrams for a lagging load and a leading load are shown in Figure 5.5.
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Figure 5.6 Phasor diagram of a salient-pole synchronous
The output power is

Po � 3 Re Va
�
I a
�

� 3VaIa cos�

The copper loss in the armature winding is
Pcu � 3Ia

2Ra

The developed power is
Pd � Po � Pcu � 3VaIa cos� � 3Ia

2Ra

If Ra � 0, then
Pd �

3VaEa sin|� |
Xd

�
3�Xd�Xq �

2XdXq
Va

2 sin|2�|

and the developed torque is
�d �

3VaEa sin|� |
Xd�s

�
3�Xd�Xq �
2XdXq�s

Va
2 sin|2�|

The input power to the field winding is
P f � V fIf

If Pr is the rotational loss and Pstray is the stray loss, then the input power P in�� Pmech � P f� is

6



P in � Po � Pcu � Pr � Pstray � P f � 3VaIa cos� � 3Ia
2Ra � Pr � Pstray � P f � 3VaIa cos� � 3Ia

2Ra � Pc

where Pc � Pr � Pstray � P f is the core loss. The efficiency of the generator
� � Po

Pin
� 3VaIa cos�

3VaIa cos��3Ia
2Ra�Pc

Example 5.2: A 70MVA 13.8kV 60Hz two-pole Y-connected three-phase salient-pole
synchronous generator has Ra � 0, Xd � 1. 83�, and Xq � 1. 21�. It delivers the rated load at
0.8 pf lagging. Determine �, Ea, VR%, Pd, and �d.
Solution: The phase terminal voltage is

Va � 13800
3

�0� � 7967. 4�0�V

The phase load current is
�
I a � 70�106

3 �13800
� � 36. 87� � 2928. 6� � 36. 87�A

It follows from the equivalent circuit that

Ea

,
� Va � j

�
I aXq �

�
I aRa � 7967. 4�0� � �2928. 6� � 36. 87���j1. 21�

� 7967. 4 � 2928. 6�0. 8 � j0. 6��j1. 21� � 10094 � j2834. 9
� 100942 � 2834. 92 � tan�1 2834. 9

10094
180
� � 10485�15. 7�V

The torque angle is 15. 7�. The d- and q-axis currents are
�
I d � Ia sin�|�| � �����90� � ��
� 2928. 6 sin �36. 87 � 15. 7� �

180 ���90� � 15. 7�� � 2323. 6� � 74. 3�A
�
I q � Ia cos�|�| � ���� � 2928. 6 cos �36. 87 � 15. 7� �

180 �15. 7� � 1780�15. 7�A
The generated voltage is

Ea � Ea

,
� j

�
I d�Xd � Xq� � 10094 � j2834. 9 � �2323. 6� � 74. 3���j�1. 83 � 1. 21��

� 10094 � j2834. 9 � 2323. 6 cos ��74. 3� �
180 � j sin ��74. 3� �

180 �j�1. 83 � 1. 21��

� 11481 � j3224. 7 � 114812 � 3224. 72 � tan�1 3224. 7
11481

180
� � 11925�15. 7�V

or is given by

Ea � Va � j
�
I dXd � j

�
I qXq �

�
I aRa

� 7967. 4�0� � �2323. 6� � 74. 3���j1. 83� � �1780�15. 7���j1. 21� � 0
� 7967. 4 � 2323. 6 cos ��74. 3� �

180 � j sin ��74. 3� �
180 �j1. 83�

� 1780 cos �15. 7� �
180 � j sin �15. 7� �

180 �j1. 21�

� 11478 � j3224. 1 � 114782 � 3224. 12 � tan�1 3224. 1
11478

180
� � 11922�15. 7�V

The developed power is
Pd � Po � Pcu � Po � 3VaIa cos� � 3 � 7967. 4 � 2928. 6 � 0. 8 � 5. 6 � 107W

The synchronous speed is
�s �

2�f
P � 2��60

2 � 188. 5rad/s
The developed torque is

�d �
Pd
�s � 5.6�107

188. 5 � 2. 970 8 � 105N � m

The voltage regulation is
VR% � 11925�7967. 4

7967. 4 � 100 � 49. 7%

5.2 Synchronous Motors
A synchronous motor is powered by a electrical source to drive a load at the synchronous
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speed. When a DC source is applied to the field winding and three-phase AC voltages are
connected to the armature windings, the motor will turns its load at the synchronous speed.

5.2.1 Synchronous Motors with a Cylindrical Rotor
The equivalent circuit for a cylindrical-rotor synchronous motor is shown in Figure 5.7, which
is the same as the cylindrical-rotor synchronous generator with the reversed armature
current direction. It follows from Kirchhoff’s voltage law that

Va � Ea �
�
I aRa � j

�
I aXs

Figure 5.8 shows the phasor diagrams for a synchronous motor with a lagging load. � is the
power factor angle and � is the torque angle. The torque angle is negative for the
synchronous motor.
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Figure 5.7 The per-phase equivalent circiut of a motor
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Figure 5.8 The phasor diagram
The input power of a synchronous motor is

P in � 3VaIa cos� � V fIf

The copper loss is
Pcu � 3Ia

2Ra � V fIf

The developed power is
Pd � P in � Pcu � 3VaIa cos� � 3Ia

2Ra

The developed torque is
�d �

Pd
�s

If Ra � 0, then
Pd � 3VaEa sin�

Xs

If Pr is the rotational loss and Pstray is the stray loss, then the output power Po�� �o�s� is
Po � Pd � Pr � Pstray
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The efficiency of the motor is
� � Po

Pin

Example 5.3: A 220V 60Hz 3-phase 2-pole Y-connected synchronous motor has a
synchronous impedance of 0.25�j2.5�/phase. The motor delivers the rated load of 80A at
0.707 pf leading. Determine (a) the generated voltage, (b) the torque angle, (c) the power
developed by the motor, and (d) the developed torque.

Solution: The phase voltage is Va � 220
3

� 127V. Assume Va � 127�0�V. The phase

armature current is
�
I a � 80�45�A. It follows from the per-phase equivalent circuit that

Ea � Va �
�
I aRa � j

�
I aXs � 127�0� � �80�45���0. 25 � j2. 5�

� 127 � 80�0. 701 � j0. 707��0. 25 � j2. 5� � 254. 38 � j154. 34
� 254. 382 � 154. 342 � tan�1 �154. 34

254. 38
180
� � 297. 54� � 31. 2�V

The torque angle is �31. 2�.
Pd � P in � Pcu � 3VaIa cos� � P f � �3Ia

2Ra � P f� � 3 � �127 � 80 � 0. 707 � 802 � 0. 25� �

16749W
The developed torque is

�d �
Pd
�s � 16749

4��60
2

� 44. 428N � m

5.2.2 Synchronous Motors with a Salient-Pole Rotor
Similar to a salient-pole synchronous generator, the per-phase equivalent circiut for a
salient-pole synchronous motor is required to analyse the motor performance, which is
shown in Figure 5.9.
The per-phase terminal voltage of the motor is

Va � Ea � Ed � Eq �
�
I aRa � Ea � j

�
I dXd � j

�
I qXq �

�
I aRa

� Ea � j
�
I dXd � j

�
I a �

�
I d Xq �

�
I aRa � Ea � j

�
I d�Xd � Xq� � j

�
I aXq �

�
I aRa

� Ea

,
� j

�
I aXq �

�
I aRa

where Ea

,
� Ea � j

�
I d�Xd � Xq�, as shown in Figure 5.9. The phasor diagrams for a leading

load and a lagging load are shown in Figure 5.10.
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Figure 5.9 The equivalent circiut of a salient-pole motor
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Figure 5.10 The Phasor diagram
Then the input power is

P in � 3 Re Va
�
I a
�

� 3VaIa cos� � V fIf

The copper loss is
Pcu � 3Ia

2Ra � V fIf

The developed power is
Pd � P in � Pcu � 3VaIa cos� � 3Ia

2Ra

If Ra � 0, then
Pd �

3VaEa sin|� |
Xd

�
3�Xd�Xq �

2XdXq
Va

2 sin|2�|
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The developed torque is
�d �

Pd
�s

If Pr is the rotational loss and Pstray is the stray loss, then the output power Po�� �o�s� is
Po � Pd � Pr � Pstray

The efficiency of the motor
� � Po

Pin

Example 5.4: A 208V 60Hz three-phase Y-connected salient-pole synchronous motor
operates at full load and draws a current of 40A at 0.8 pf lagging. The d- and q-axis
reactances are 2.7�/phase and 1.7�/phase, respectively. The armature-winding resistance is
negligible, and the rotational loss is 5% of the power developed by the motor. Determine (a)
the developed voltage, (b) the developed power, and (c) the efficiency.

Solution: The per-phase load voltage and current are Va � 208
3
�0� � 120�0�V and

�
I a � 40� � cos�1�0. 8� � 40� � 36. 87�A.
It follows from the per-phase equivalent circuit that

Ea

,
� Va � j

�
I aXq �

�
I aRa � 120�0� � �40� � 36. 87���j1. 7� � 120 � 40�0. 8 � j0. 6��j1. 7�

� 79. 2 � j54. 4 � 79. 22 � 54. 42 � tan�1 �54. 4
79. 2

180
� � 96. 083� � 34. 48�V

which means that the torque angle is � � �34. 48�. It follows from the phasor diagram that
the absolute value of the angle between

�
I q and

�
I a are 	 � |� � �| � |�36. 87 � ��34. 48�| � 2.

39�. Therefore, the d-axis armature current is
�
I d � Ia sin	��� � 90�� � 40 sin 2. 39 �

180 ���34. 48 � 90�� � 1. 668� � 124. 48�

� 1. 668 cos �124. 48 �
180 � j sin �124. 48 �

180 � � 0. 944 � j1. 375 A
(a) The per-phase developed voltage is

Ea � Ea

,
� j

�
I d�Xd � Xq� � �79. 2 � j54. 4� � j��0. 944 � j1. 375��2. 7 � 1. 7�

� 77. 825 � j53. 456 � 77. 8252 � 53. 4562 � tan�1 �53. 456
77. 825

180
� � 94. 415� � 34. 48�V

(b) As Ra � 0, the AC input power is the same as the developed power, that is,
Pd � P in � Pcu � P in � 3VaIa cos� � 3 � 120 � 40 � 0. 8 � 11520W

Or it can be calculated by
Pd �

3VaEa sin|� |
Xd

�
3�Xd�Xq �

2XdXq
Va

2 sin|2�|

�
3�120�94. 415�sin 34. 48 �

180
2.7 �

3�2.7�1.7�
2�2.7�1.7 � 1202 � sin 2 � 34. 48 �

180 � 11519W
(c) The output power is

Po � P in � Pcu � Pr � Pstray � P in � Pr � 11520 � 0. 05 � 11520 � 10944W
and the efficiency is

� � Po
Pin

� 100 � 10944
11520 � 100 � 95%
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Chapter 6 Induction Motors

6.1 Three-Phase Induction Motors
The essential components of an induction motor are a stator and a rotor. A balanced
three-phase winding is placed on the stator. There are two types of rotors: a
squirrel-cage rotor and a wound rotor. Rotor windings are short-circuited for both
types of rotors. When the stator winding of a three-phase induction motor is
connected to a three-phase power supply, it produces a rotating magnetic field which
is constant in magnitude and revolves at the synchronous speed given by

s 
4f
P or Ns 

120f
P

where f is the frequency of the power supply and P is the number of poles. This
rotating magnetic field induces emf in the rotor winding. Since the rotor winding is
short-circuited, the induced emf produces an induced current in the rotor winding,
which, together with the rotating magnetic field, induces torque on the rotor winding
to make the rotor spin at speed m. It is important to note that the induced voltage is
proportional to the relative speed of the rotor with respect to the synchronous speed
of the rotating magnetic field. Such a relative speed is defined as the slip speed

r  s − m or Nr  Ns − Nm

and the ratio between the relative speed and the synchronous speed is referred to as
the slip

s  s−m
s

 Ns−Nm
Ns

The motor speed can be expressed as
m  1 − ss or Nm  1 − sNs

The frequency of the induced voltage in the rotor is
fr  PNr

120  PNs−Nm
120  PNs

120
Ns−Nm

Ns
 sf

When the rotor is stationary, the slip is 1 and the rotor appears exactly like a
short-circuited secondary winding of a transformer. Therefore, an induction motor is a
transformer with a rotating secondary winding and the equivalent circuit for a
transformer can be used for an induction motor.
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Figure 6.1
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cÎ
mÎ
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Figure 6.3
Figure 6.1 shows a per-phase equivalent circuit for a three-phase induction motor,
where
V1 per-phase stator voltage

I 1 per-phase stator current
R1 per-phase stator resistance
L1 per-phase stator leakage inductance
X1  2fL1 per-phase stator leakage reactance

I r per-phase rotor current
Rr per-phase rotor resistance
Lr per-phase rotor leakage inductance
Xb  2fLr per-phase rotor leakage reactance at s1
Xr  2frLr  sXb per-phase rotor leakage reactance
Xm per-phase magnetization reactance
Rc per-phase core-loss resistance
E1 per-phase induced voltage in the stator winding
Eb per-phase induced voltage in the rotor winding at s1
Er  sEb per-phase induced voltage in the rotor winding

I  


I c 


I m per-phase excitation current


I c per-phase core-loss current

I m per-phase magnetization current

2



a effective turns ratio
Note that


I r  Er

RrjXr
 sEb

RrjsXb
 Eb

Rr
s jXb

Hence the equivalent circuit Figure 6.1 can be modified as Figure 6.2. Referring the
rotor side to the stator side, the equivalent circuit Figure 6.2 is transformed to the
equivalent circuit Figure 6.3. The approximate per-phase equivalent circuit is given as
Figure 6.4.
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Figure 6.4
The Stator Resistance Test
Let RL be the DC value of the resistance between any two terminals of the motor.
Then the per-phase resistance is

R1  0. 5RL for Y-connection
R1  1. 5RL for -connection

The Blocked-Rotor Test
The rotor is held still by external torque and a variable three-phase power is applied
to the stator winding. The stator voltage is carefully increased from zero until the
motor draws the rated current. Let Vbr, Ibr, and Pbr be the input voltage, current, and
power on a per-phase basis. Then,

Re  Pbr

Ibr
2

|Ze |  Vbr

Ibr
2

where Ze  Re  jXe  R1  R2  jX1  X2 . Therefore,
R2  Re − R1

Xe  |Ze |2 − Re
2

For all practical purposes, it is assumed that X1  X2  0. 5Xe

The No-Load Test
The rated voltage is applied to the stator winding and the motor operates without any
load. Let VNL, INL, and PNL be the input voltage, current, and power on a per-phase
basis. Let Pr be the rotational loss on a per-phase basis. Then the power loss in Rc is

Pc  PNL − Pr

and
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Rc  VNL
2

Pc

|Z |  VNL
INL

where Z  1
1

Rc
 1

jXm

. Note that 1
Z

2
 1

Rc

2
 1

Xm

2. As a result, we have

Xm  1

1
Z

2
− 1

Rc
2

Power Flow Diagram
The following are based on the exact per-phase equivalent circuit.
The input power: Pin  3V1I1 cos 
The stator copper loss: Pscu  3I1

2R1

The air-gap power: Pag  Pin − Pscu  3I2
2 R2

s (the power consumed by R2
s 

The rotor copper loss: Prcu  3I2
2R2  sPag

The developed power: Pd  Pag − Prcu  Pag − sPag  1 − sPag  3I2
2 1−sR2

s

The rotational loss: Pr  Pc  Pfw  Pstray

The output power: Po  Pd − Pr

oP

rP  

dPagPinP

rcuPscuP

Figure 6.5
The following are based on the approximate equivalent circuit.
It follows from the approximate equivalent circuit Figure 6.4 that the rotor current is


I 2  V1

R1R2jX1X2 
1−sR2

s

 V1

R1R2
1−sR2

s
2
X1X2 2

∠2

So the developed power is

Pd  3I2
2 1−sR2

s  3V1
2 1−sR2

s

R1R2
1−sR2

s
2
X1X2 2

which is a function of s. By differentiating Pd with respect to s and setting the
derivative to zero, we can find the slip for the maximum power, which is given by

smax,p  R2

R2 R1R2 2X1X2 2

and
Pd,max  3

2
V1

2

R1R2 R1R2 2X1X2 2

The Efficiency
Using the approximate equivalent circuit, the output power can also be calculated by
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Po  Pd − Pr  Pag − Prcu − Pr  Pin − Pscu − Prcu − Pr  3V1I2 cos  − 3I2
2R1 − 3I2

2R2 −
Therefore, the efficiency is

  Po
Pin

 3V1I2 cos −3I2
2R1R2 −Pr

3V1I2 cos 

Differentiating  with respect to I2 and setting the derivative equal to zero gives
3I2

2R1  R2   Pr

which implies that the efficiency is maximum when the sum of the stator and the rotor
cooper losses is equal to the rotational loss, that is,

max  3V1I2 cos −2Pr
3V1I2 cos 

at
I2,max,  Pr

3I2R1R2 

The Developed Torque
Note that Pd  md. Thus the developed torque is given by

d  Pd
m



3V1
2 1−sR2

s

R1R2
1−sR2

s
2
X1X2 2

m
 3V1

2 1−sR2
s

1−ss R1R2
1−sR2

s
2
X1X2 2

 3V1
2R2

ss R1R2
1−sR2

s
2
X1X2 2

Differentiating d with respect to s and setting it equal to zero, it can be shown that
the slip for the maximum torque is given by

smax,  R2

R1
2X1X2 2

and the corresponding maximum torque (pull-out torque or break-down torque) is
given by

d,max  3V1
2

2s R1 R1
2X1X2 2

Example 6.1: The following test data were obtained on a 460V, 4-pole, 60Hz,
-connected three-phase induction motor:
No-load test: power input380W, line current  1.15A at rated voltage.
Blocked-rotor test: power input15W, line current  2.1A at the line voltage of 21V.
The friction and windage loss is 21W, and the winding resistance between any two
lines is 1.2.
Determine (a) the equivalent circuit parameters of the motor, (b) the starting torque
and starting current by using the approximate equivalent circuit, (c) the motor speed,
developed torque, and efficiency at s5%, (d) the maximum torque and its
corresponding speed, (e) the maximum developed power and its corresponding
speed, and (f) plot the developed torque against the slip.
Solution:
(a) The per–phase resistance of the stator is R1  1. 5RL  1. 5  1. 2  1. 8.
From the blocked-rotor test, Vbr  21V, Ibr  2.1

3
 1. 2A, Pbr  15

3  5W. Therefore,
the equivalent resistance is
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Re  Pbr

Ibr
2  5

1.22  3. 5

The rotor resistance is R2  Re − R1  3. 5 − 1. 8  1. 7
The equivalent impedance is

|Ze |  Vbr
Ibr

 21
1.2  17. 5

The equivalent reactance is
Xe  |Ze |2 − Re

2  17. 52 − 3. 52  17. 1
From the no-load test, VNL  460V, INL  1.15

3
 0. 66A, PNL  380

3  127W ,

Pc  380−21
3  120W. Therefore, the equivalent core resistance is

Rc  VNL
2

Pc
 4602

120  1763. 3
The excitation impedance is

|Z |  VNL
INL

 460
0.66  696. 97

The magnetization reactance is
Xm  1

1
Z

2
− 1

Rc
2
 1

1
696. 97

2
− 1

1763.3
2
 758. 76

(b)
The synchronous speed is

s 
4f
P  460

4  188. 5rad/s or Ns 
120f

P  12060
4  1800rpm

The phase input voltage is V1  460∠0∘V.
The starting torque is

d |s1  3V1
2R2

ss R1R2
1−sR2

s
2
X1X2 2

s1

 346021.7
188. 5 3.50217. 12  18. 8N  m

It follows from the approximate equivalent circuit that the rotor current at the time of
starting is

I 2  V1

R1R2jX1X2 
1−sR2

s

 460∠0∘
3.5j17. 10  4603.5−j17. 1

3.5j17. 13.5−j17. 1  4603.5−j17. 1
3.5217. 12  5. 3 − j25. 8A

The stator current at the time of starting is

I 1 


I  


I 2  V1

Rc
 V1

jXm


I 2  V1

1
Rc

 1
jXm



I 2

 460∠0∘  1
1763.3  1

j758. 76  5. 3 − j25. 8

 460 1
1763.3 − j 1

758. 76  5. 3 − j25. 8

 5. 56 − j26. 41  5. 562  26. 412∠ tan−1 −26. 41
5. 56

180
  27. 0∠ − 27. 0∘A

(c)
The motor speed at s0.05 is m  1 − ss  1 − 0. 05  188. 5  179. 1rad/s or
Nm  1 − sNs  1 − 0. 05  1800  1710rpm.
The developed torque is
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d |s5%  3V1
2R2

ss R1R2
1−sR2

s
2
X1X2 2

s5%

 346021.7

0.05188. 5 3.5 1−0.051.7
0.05

2
17.12

 72.

7N  m
It follows from the approximate equivalent circuit that the rotor current at s5% is


I 2  V1

R1R2jX1X2 
1−sR2

s

 460∠0∘

3.5j17.1 1−0.051.7
0.05

 46035.8−j17. 1
35.8j17. 135.8−j17. 1  46035.8−j17. 1

35. 8217. 12

 10. 46 − j5. 0  10. 462  5. 02∠ tan−1 −5.0
10. 46

180
  11. 6∠ − 25. 5∘A

The stator current at the time of starting is

I 1 


I  


I 2  V1

Rc
 V1

jXm


I 2  V1

1
Rc

 1
jXm



I 2

 460∠0∘  1
1763.3  1

j758. 76  10. 46 − j5. 0

 460 1
1763.3 − j 1

758. 76  10. 46 − j5. 0

 10. 72 − j5. 61  10. 722  5. 612∠ tan−1 −5. 61
10. 72

180
  12. 1∠ − 27. 6∘A

The input power is
Pin  3V1I1 cos   3  460  12. 1  cos 27. 6 

180  14798W
The stator copper loss is Pscu  3I2

2R1  3  11. 62  1. 8  727W(
The air-gap power is Pag  Pin − Pscu  14798 − 727  14071W
The rotor copper loss: Prcu  3I2

2R2  3  11. 62  1. 7  686W
The developed power: Pd  Pag − Prcu  14071 − 686  13385W
The output power: Po  Pd − Pr  Pd − Pc − Pfw  13385 − 380 − 21 − 21 
13005W
The efficiency is

  Po
Pin

 100  13005
14798  100  87. 9%

(d)
The slip for the maximum torque is

smax,  R2

R1
2X1X2 2

 1.7
1.8217.12

 0. 099

and the corresponding maximum torque (pull-out torque or break-down torque) is
given by

d,max  3V1
2

2s R1 R1
2X1X2 2

 34602

2188. 5 1.8 1.8217.12
 88. 6N  m

The speed is
Nm  1 − sNs  1 − 0. 099  1800  1622rpm

(e)
The slip for the maximum developed power is

smax,p  R2

R2 R1R2 2X1X2 2
 1.7

1.7 3.5217.12
 0. 089

and
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Pd,max  3
2

V1
2

R1R2 R1R2 2X1X2 2
 3

2
4602

3.5 3.5217.12
 15147W

The speed is
Nm  1 − sNs  1 − 0. 089  1800  1640rpm

or
m  1 − ss  1 − 0. 089  188. 5  171. 7rad/s

The developed torque is
d  Pd,max

m
 15147

171. 7  88. 2N  m

(f) The relationship between the developed torque and the slip is given by
d  3V1

2R2

ss R1R2
1−sR2

s
2
X1X2 2

 346021.7

s188. 5 3.5 1−s1.7
s

2
17.12



5725. 0
s 1

s 1. 7s−1. 7−3. 5 2292. 41

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0
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Figure 6.6
Some Important Observation:

(1) When the motor is operating near its rated slip, which is less than 10%, the
developed torque is directly proportional slip.
(2) For a constant slip, the developed torque is directly proportional the square of the
applied voltage.

6.2 Single-Phase Induction Motors
6.2.1 Double Revolving-Field Theory
Similar to three-phase induction motors, single-phase motors have the stator and
rotor with the rotor winding short-circuited. Unlike three-phase induction motors,
single-phase induction motors have only one phase winding in the stator. A
single-phase AC voltage is applied to the stator winding, which produces an AC
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current in the stator winding. Suppose that it  Im cost. Then, the resultant
air-gap magnetic flux density is given by

B  Bmax cost i  BCW  BCCW

where BCW and BCCW represent the clockwise and counterclockwise rotating magnetic
fields, respectively, defined by

BCW  0. 5Bm cost i − 0. 5Bm sint j
BCCW  0. 5Bm cost i  0. 5Bm sint j

The equation above implies that the sum of the clockwise and counterclockwise
rotating magnetic fields is equal to the stationary pulsating megnetic field, that is, the
stationary pulsating megnetic field can be resolved into two rotating magnetic fields,
each of equal magnetude but rotating at the synchronous speed in opposite
directions. The synchronous speed is determined by

s 
4f
P or Ns 

120f
P

Suppose that the motor rotates in the counterclockwise direction at speed m. Define
s  s−m

s
. Then, BCCW is called the forward magnetic field, denoted Bf, rotating at the

synchronous speed of  fs  s while BCW the backward magnetic field at bs  −s,
denoted Bb. The slip of the motor is sf 

 fs−m
 fs

 s with respect to Bf and
sb  rs−m

rs
 −s−m

−s
 −2ss−m

−s
 2 − s with respect to Bb.

Similar to three-phase induction motors, single-phase motors can be analyzed by
using the equivalent circuit. Figure 6.7 shows the equivalent circuit for a single-phase
AC motor at still, which is equivalent to the circuit with the effects of the forward and
backward magnetic fields separated, as shown in Figure 6.8. For a motor running at
speed m, the effective rotor resistance changes with the slip. The rotor resistance is
R2
s with respect to Bf while R2

2−s with respect to Bb. The final equivalent circuit is
shown in Figure 6.9.

mjX

2jX

2R

1jX
1R

1̂I

2Î

1̂V  

Figure 6.7
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Define

Z1  R1  jX1
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Zf  Rf  jXf  0. 5 jXmR2/sjX2 
R2/sjX2Xm 

 0. 5 jXmR2/sjX2 R2/s−jX2Xm 
R2/sjX2Xm R2/s−jX2Xm 

 0. 5 jXm R2/s2X2X2Xm −jXmR2/s

R2/s2X2Xm 2  0. 5 Xm
2 R2/sjXm R2/s2X2X2Xm 

R2/s2X2Xm 2

 0. 5 Xm
2 R2/s

R2/s2X2Xm 2  j0. 5 Xm R2/s2X2X2Xm 

R2/s2X2Xm 2

Zb  Rb  jXb  0. 5 jXmR2/2−sjX2 
R2/2−sjX2Xm 

 0. 5 jXmR2/2−sjX2 R2/2−s−jX2Xm 
R2/2−sjX2Xm R2/2−s−jX2Xm 

 0. 5 jXm R2/2−s2X2X2Xm −jXmR2/2−s

R2/2−s2X2Xm 2  0. 5 Xm
2 R2/2−sjXm R2/2−s2X2X2Xm 

R2/2−s2X2Xm 2

 0. 5 Xm
2 R2/2−s

R2/2−s2X2Xm 2  j0. 5 Xm R2/2−s2X2X2Xm 

R2/2−s2X2Xm 2

Rf  0. 5 Xm
2 R2/s

R2/s2X2Xm 2

Xf  0. 5 Xm R2/s2X2X2Xm 

R2/s2X2Xm 2

Rb  0. 5 Xm
2 R2/2−s

R2/2−s2X2Xm 2

Xb  0. 5 Xm R2/2−s2X2X2Xm 

R2/2−s2X2Xm 2

Then,
Zin  Z1  Zf  Zb

Thus, the stator current is

I 1  V1

Zin

The input power is
Pin  Re V1


I 1
∗

 V1I1 cos 

The stator copper loss is
Pscu  I1

2R1

The air-gap power due to the forward magnetic field is
Pagf  I1

2Rf  0. 5I2f
2 R2

s

The air-gap power due to the backward magnetic field is
Pagb  I1

2Rb  0. 5I2b
2 R2

2−s

The forward rotor copper loss is
Prcuf  0. 5I2f

2 R2  sPagf

The backward rotor copper loss is
Prcub  0. 5I2b

2 R2  2 − sPagb

The power developed by the forward magnetic field is
Pdf  Pagf − Prcuf  1 − sPagf

The power developed by the backward magnetic field is
Pdb  Pagb − Prcub  −1 − sPagb

The total developed power is
Pd  Pdf  Pdb  1 − sPagf − Pagb   1 − sPag

11



So, the net air-gap power is
Pag  Pagf − Pagb

The mechanical developed power is
Pd  1 − sPag  dm  1 − sds

The developed torque is
d  Pd

m
 1−sPag

1−ss
 Pagf−Pagb

s
 Pagf

s
− Pagb

s
  fd − bd

The output power is
Po  Pd − Pr

where the rotational loss is Pr  Pc  Pfw  Pstray.
Example 6.2: A 4-pole 110V 50Hz single-phase induction motor has R1  2,
X1  2. 8, R2  3. 8, X2  2. 8, and Xm  60. The rotational loss is 20W.
Determine the shaft torque, the motor efficiency when the slip is 4%, and the
developed torque characteristics.
Solution:The synchronous speed is

s 
4f
P  450

4  157. 08rad/s or Ns 
120f

P  12050
4  1500rpm

The impedances are
Z1  R1  jX1  2  j2. 8
Zf  Rf  jXf 

0.5jXm0.5R2/sj0.5X2 
0.5jXm0.5R2/sj0.5X2 

 0. 5 jXmR2/sjX2 
R2/sjX2Xm 

 0. 5 j603.8/0.04j2.8
3.8/0.04j2.860

 0. 5 −168j5700
95.0j62. 8  0. 5 −168j570095−j62. 8

95j62. 895−j62. 8  0. 5 3. 42105j5.520 5105

95262. 82  13. 185  j21. 284

Zb  Rb  jXb  0.5jXm0.5R2/2−sj0.5X2 
0.5jXm0.5R2/2−sj0.5X2 

 0. 5 jXmR2/2−sjX2 
R2/2−sjX2Xm 

 0. 5 j603.8/2−0.04j2.8
3.8/2−0.04j2.860

 0. 5 −168.0j116. 33
1. 938 8j62. 8  0. 5 −168.0j116. 331. 938 8−j62. 8

1. 938 8j62. 81. 938 8−j62. 8  0.56979. 8j10776
1. 938 8262. 82  0. 884 06  j1.

364 9
Zin  Z1  Zf  Zb  2  j2. 8  13. 185  j21. 284  0. 884 06  j1. 364 9  16.

069  j25. 449
Thus, the stator current is


I 1  V1

Zin
 110∠0∘

16. 069j25. 449  110∠0∘

16. 069225. 4492∠ tan−1 25. 449
16. 069

180


 110∠0∘
30. 098∠57. 731∘  3.

654 7∠ − 57. 731∘A

I 2f 

j Xm
2

R2
2s j X2

2  Xm
2


I 1  jXm

R2
s jX2Xm 


I 1  j60

3.8
0.04 j2.860

3. 654 7∠ − 57. 731∘ 

 60∠90∘ 3. 654 7∠−57. 731∘ 

3.8
0.04

2
2.8602∠ tan−1 2.860

3.8
0.04

180


 60∠90∘ 3. 654 7∠−57. 731∘ 
113. 88∠33. 467∘  1. 925 6∠ − 1. 198∘A


I 2b 

j Xm
2

R2
22−s j X2

2  Xm
2


I 1  jXm

R2
s jX2Xm 


I 1  j60

3.8
2−0.04 j2.860

3. 654 7∠ − 57. 731∘ 

 60∠90∘ 3. 654 7∠−57. 731∘ 

3.8
2−0.04

2
2.8602∠ tan−1 2.860

3.8
2−0.04

180


 60∠90∘ 3. 654 7∠−57. 731∘ 
62. 830∠88. 232∘  3. 490 1∠ − 55. 963∘A

The input power is
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Pin  Re V1

I 1
∗

 V1I1 cos   110  3. 654 7  cos 57. 731 
180  214. 63W

The stator copper loss is
Pscu  I1

2R1  3. 654 72  2  26. 714W
The air-gap power due to the forward magnetic field is

Pagf  I1
2Rf  3. 654 72  13. 185  176. 11W or  0. 5I2f

2 R2
s  0. 5  1.

925 62 3.8
0.04  176. 13W

The air-gap power due to the backward magnetic field is
Pagb  I1

2Rb  3. 654 72  0. 884 06  11. 808W or  0. 5I2b
2 R2

2−s  0. 5  3.
490 12  3.8

2−0.04  11. 808W
The net air-gap power is

Pag  Pagf − Pagb  176. 13 − 11. 808  164. 32W
The mechanical developed power is

Pd  1 − sPag  1 − 0. 04  164. 32  157. 75W
The output power is

Po  Pd − Pr  157. 75 − 20  137. 75W
The efficiency is

  137. 75
214. 63  100  64. 2%

The motor speed is
m  1 − ss  1 − 0. 04  157. 08  150. 80rad/s

The motor shaft torque is
o  Po

m
 137. 75

150. 80  0. 913 46N  m

The developed torque of the forward and backward magnetic field is
df 

1−sPagf
m

 V1
2Rf

s R1RfRb 2X1XfXb 2  1102Rf

157.08 2RfRb 22.8XfXb 2

db  V1
2Rb

s R1RfRb 2X1XfXb 2  1102Rb

157.08 2RfRb 22.8XfXb 2

with
Rf  0. 5 6023.8/s

3.8/s22.8602

Xf  0. 5 60 3.8/s22.82.860

3.8/s22.8602

Rb  0. 5 6023.8/2−s
3.8/2−s22.8602

Xb  0. 5 60 3.8/2−s22.82.860

3.8/2−s22.8602
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Figure 6.10 d (thick solid line) df (dashed line); df (thin
d  1102Rf

157.08 2RfRb 22.8XfXb 2 − 1102Rb

157.08 2RfRb 22.8XfXb 2

6.2.2 Types of Single-Phase Induction Motors
It is observed from Figure 6.10 that the developed torque is the torque developed by
the forward magnetic field less the torque developed by the backward magnetic field.
It is noted that df and db are the same at the starting moment, so the starting torque
is zero, which means that this motor cannot start by itself. However, by introducing
an extra winding and some capacitors, single-phase induction motors can be made
self-starting.
1. Split-Phase Motors
A split-phase induction motor has two separate windings: main winding and auxiliary
winding. They are placed in space quadrature and connected to a single-phase
power source. The main winding has a low resistance and high inductance and
carries current to establish the main flux at the rated speed. The auxiliary winding has
a high resistance and low inductance and is desconnected from the supply by a
centrifugal switch when the motor reaches a speed of nearly 75% of its synchronous
speed.
At the time of starting, the main winding current lags the applied voltage by almost
90∘ owing to its high inductance (large number of turns) and low resistance (large
size wire) while the auxiliary winding current is essentially in phase with the applied
voltage due to its low inductance and high resistance. Since the two windings are
placed in space quadrature and carry out-of-phase currents, a rotating magnetic field
is produced in the air-gap and the motor is able to rotate by itself.
2. Capacitor-Start Motors
In split-phase motor, the main winding current does not lag the auxiliary winding
current exactly by 90∘. However, by connecting a capacitor in series with the auxiliary
winding, it is possible to make the main winding current lag the auxiliary winding
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current exactly by 90∘.
3. Capacitor-Start Capacitor Run Motors
The power factor for both split-phase and capacitor start motors is low and so is
efficiency, usually 50%-60%. The efficiency can be improved by employing another
capacitor when the motor runs at the rated speed. This led to the development of a
capacitor-start and capacitor-run motor.
4. Permanent Split-Capacitor Motors
The permanent split-capacitor motor is developed by removing the start-capacitor and
cetrifugal switch from the capacitor-start capacitor-run motor.

Chapter 7. Special Motors
7.1 Universal Motors
A DC series motor specially designed for AC operation is usually referred to as a
universal motor. The equivalent circuit is shown in Figure 7.1

jXa

Ra
sV̂

Rs      jXs 

aÊ

aÎ

Figure 7.1
The phasor diagram for a lagging load is shown in Figure 7.2.

aÎ  

saRI

sV̂

aÊ
aa RI

sa XjI

aa XjI

Figure 7.2
Example 7.1: A 120V 60Hz 2-pole universal motor operates at a speed of 8000rpm
on full load and draws a current of 17.58A at a lagging power factor of 0.912. The
impedance of the series field winding is 0.65j1.2. The impedance of the armature
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winding is 1.36j1.6. Determine (a) the induced voltage, (b) the power output, (c)
the shaft torque, and (d) the efficiency if the rotational loss is 80W.
Solution: From the equivalent circuit, we have

Ea  Vs −

I aRs  Ra  jXs  jXa   120 − 17. 58∠ − 24. 22∘ 0. 65  1. 36  j1. 2  1. 6

 120 − 17. 58 cos −24. 22 
180  j sin −24. 22 

180 0. 65  1. 36  j1. 2  1. 6
 67. 581 − j30. 395  67. 5812  30. 3952∠ tan−1 −30. 395

67. 581
180
  74. 1∠ − 24.

22∘V
Note that the induced voltage is in phase with the armature current.
The input power is

Pin  VsIa cos   120  17. 58  0. 912  1924W
The copper loss

Pcu  Ia
2Rs  Ra   17. 5820. 65  1. 36  621. 2W

The developed power is
Pd  Pin − Pcu  1924 − 621. 2  1302. 8W

The output power is
Po  Pd − Pr  1302. 8 − 80  1222. 8W

The efficiency is
  Po

Pin
 100  1222. 8

1924  100  63. 6%

The motor speed is
m  2n

60  28000
60  837. 76rad/s

The shaft torque is
o  Po

m
 1222. 8

837. 76  1. 46N  m

7.2 Permanent DC Motors
A DC motor with the magnetic field being produced by permanent magnets is called
the permanent DC motor. The equivalent circuit for a permanent DC motor is shown
in Figure 7.3.
The dynamical equations are given by

eat  Kaat
dt  Kaaiat
vat  Raiat  La

diat
dt  Kaat

J dt
dt  Kaaiat − Lt − Dt

The steady-state quantities are calculated by letting diat
dt and dt

dt be zero, that is,
ea  Kaa
d  Kaaia
va  Raia  Kaa
0  Kaaia − L − D
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Figure 7.3
Example 7.2: Calculate the magnetic flux in a 200W, 100V PM DC motor operating
at 1500rpm. The motor constant is 85, the armature resistnace is 2, and the
rotational loss is 15W.
Solution:   2n

60  21500
60  157. 08rad/s

The developed power is Pd  Po  Pr  200  15  215W
The developed torque is d  Pd

  215
157. 08  1. 368 7N  m

It follows from d  Kaaia that
ia 

d
Kaa

Substituting this into va  Raia  Kaa gives
va  Ra

d
Kaa

 Kaa

that is,
100  2 1. 368 7

85a
 85  157. 08a

2

or
8500a  2  1. 368 7  852  157. 08a

2

Solving this for positive a produces

a  8500 85002−421. 368 7852157. 08
2852157. 08

 7. 152 4  10−3 and 3. 372 3  10−4

Because ea  Kaa  85  3. 372 3  10−4  157. 08  4. 502 6V is too small
and ea  Kaa  85  7. 152 4  10−3  157. 08  95. 497V is reasonable, so
a  7. 152 4  10−3Wb.

7.2 Stepper Motors
m  2

P e

m  2
P e

nm  2
P ne

ne  1
2N npulses

nm  1
NP npulses

where P is the number of poles, N is the number of phases, m is the mechanical
angle, e is the electrical angle, m and nm are the mechanical speed, e and ne are
the electrical speed, npulses is the number of pules per minute.
Example 7.3: A three-phase permanent-magnet stepper motor required for one
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particular application must be capable of controlling the position of a shaft in steps of
7.5∘, and it nust be capable of running at speeds of up to 300rpm. (a) How many
poles must this motor have? (b) At what rate must control pulses be received in the
motor’s control unit if it is to be driven at 300rpm?
Solution: (a) In a three-phase stepper motor, each pulse advances the rotor’s
position by 60 electrical degrees. This advance must correspond to 7.5 mechanical
degrees. Solving m  2

P e for P yields
P  2 e

m
 2 60

7.5  16 poles
(b) Solving nm  1

NP npulses for npulses gives
npulses  NPnm  3  16  300  14400 pulses/minute240 pulses/s
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Formula Sheet for the Final Exam:
B  H,  BA,0  4  10−7H/m
  ℱ

 ,ℱ  Ni,  l
A

e  d
dt ,  N, L  

i  N2



W, x  1
2L 

2, Wi, x  1
2 Li2

f  − ∂W,x
∂x  1

2 i2 dLx
dx , f  ∂Wi,x

∂x  1
2 i2 dLx

dx

e1  d1
dt , e2  d2

dt ,1  11  12  L11i1  L12i2,2  21  22  L21i1  L22i2

W1,2,   1
2 Γ11

2 1
2  Γ1212  1

2 Γ222
2, Wi1, i2,   1

2 L11i1
2  L12i1i2  1

2 L22i2
2

  − ∂W1,2,
∂  1

2 i1
2 dL11

d  i1i2
dL12

d  1
2 i2

2 dL22
d

  ∂Wi1,i2,
∂  1

2 i1
2 dL11

d  i1i2
dL12

d  1
2 i2

2 dL22
d

e  l v  B, f  i l  B
eat  Keiftt, dt  Kiftiat
s  KeIfVasLaia0LasRa J0−Ls

JsDLasRa KeIf 
2

Ias 
VasLaia0JsD−KeIfJ0−Ls

JsDLasRa KeIf 
2

Ifs 
VfsLfif0

LfsRf

ZY  1
3 Z, Van  Vab

3
∠ − 30∘,


I A′  3


I A∠ − 30∘

-Y connection: EA1  aEA2∠ − 30∘,

I A2

,
 1

a

I A2∠ − 30∘

Y- connection: EA1  aEA2∠30∘,

I A2

,
 1

a

I A2∠30∘

m  1 − ss,s 
4f
P

Ea
,
 Ea − j


I dXd − Xq (synchronous generator),Ea

,
 Ea  j


I dXd − Xq (synchronous

motor)

Pd  3I2
2 1−sR2

s  3V1
2 1−sR2

s

R1R2
1−sR2

s
2
X1X2 2

, d  3V1
2R2

ss R1
R2
s

2
X1X2 2

smax,p  R2

R2 R1R2 2X1X2 2
, Pd,max  3

2
V1

2

R1R2 R1R2 2X1X2 2

smax,  R2

R1
2X1X2 2

, d,max  3V1
2

2s R1 R1
2X1X2 2

Zf  Rf  jXf  0. 5 jXmR2/sjX2 
R2/sjX2Xm 

 0. 5 Xm
2 R2/s

R2/s2X2Xm 2  j0. 5 Xm R2/s2X2X2Xm 

R2/s2X2Xm 2

Zb  Rb  jXb  0. 5 jXmR2/2−sjX2 
R2/2−sjX2Xm 

 0. 5 Xm
2 R2/2−s

R2/2−s2X2Xm 2  j0. 5 Xm R2/2−s2X2X2Xm 

R2/2−s2X2Xm 2

Pagf  I1
2Rf  0. 5I2f

2 R2
s , Pagb  I1

2Rb  0. 5I2b
2 R2

2−s

Pdf  Pagf − Prcuf  1 − sPagf, Pdb  Pagb − Prcub  −1 − sPagb

Pd  1 − sPag, Pag  Pagf − Pagb

Pd  1 − sPag  dm  1 − sds
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d  Pagf
s
− Pagb

s
  fd − bd

eat  Kaat, dt  Kaaiat
m  2

P e, nm  1
NP npulses
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