Consistency of Inter-database Cortical Thinning with Age

M. Ethan MacDonald Rebecca J. Williams Nils D. Forkert Avery A. J. Berman Cheryl M. McCreary Richard Frayne G. Bruce Pike

Declaration of Financial Interests or Relationships

Speaker Name: Ethan MacDonald

I have no financial interests or relationships to disclose with regard to the subject matter of this presentation.

Motivation

- Many studies consolidate large lifespan databases without testing for differences between the databases
- Some lifespan databases, such as FCN, make lifespan databases from many smaller databases
- Previous studies suggest that there will be differences between databases when parameters differ^{1,2}
- Answer the question:

What are the differences in cortical thinning between lifespan databases?

[1) Han et al., 2006. NeuroImage, 2) Dickerson, et al., 2008. NeuroImage]

BLUE: y = -0.0024 t + 2 RED: y = -0.0020 t + 2

4

Image Data

- 4 Databases:
 - Calgary Normative Database
 - Open Access Series of Imaging Studies (OASIS) database
 - Information eXctraction of Images (IXI) database
 - Dallas Lifespan Brain Study (DLBS) database
- Total 1,382 Subjects
- T₁-weighted Anatomical Scans

Database Breakdown

Calgary Normative Database

- Montreal Cognitive Assessment score >26
- 3T GE Scanner
- 1 mm³

OASIS database

- Tested normal on Mini-Mental State Exam
- 1.5T Siemens scanner
- 1 mm × 1 mm × 1.25 mm

IXI database

- Philips 3T, Philips 1.5T, or GE 1.5T
- 0.94 mm × 0.94 mm × 1.2 mm

DLBS database

- Philips 3T
- 1 mm³

Database Age and Sex Distribution

Cortical Parcellation

 Freesurfer (v5.3.0), DK Atlas – 34 parcellations per hemisphere

 Cortical thickness measurements were exported to Matlab for statistics and plotting

Statistical Analysis

- General Linear Model (GLM) of surface differences
 between databases
- For each region:
 - Calculated the linear regression line
 - Tested for Correlation with age using Pearson test
 - Tested the residuals for normality and homogeneity of variance between databases
 - ANCOVA test, 4-level factor of database and age as a covariate
- Calculated the Correlation Matrix and Regression Bootstrapping of each database

Statistical Analysis Results

- Pearson correlation test
 (258/280 at *p* < 0.01; 263/280 at p < 0.05)
- The Jarque–Bera tests of normality (261/280 at *p* < 0.01; 272/280 at *p* < 0.05)
- The Levene's test for homogeneity of variance (57/70 at *p* < 0.01; 64/70 at *p* < 0.05)
- ANCOVA test was significant in all 70 regions (*p* < 0.001; and after Bonferroni Correction *p* < 1.43(10⁻⁵))

Combined Databases

Calgary Normative

Right Hemisphere

Left Hemisphere

Age Prediction

• Multiple regression model

			Test Database							
	Leave One Out		Calgary Normative		OASIS		IXI		DLBS	
Calibration Database	R ²	MAD	R ²	MAD	R ²	MAD	R ²	MAD	R ²	MAD
Calgary Normative	0.647	10.95			0.726	13.19	0.660	11.37	0.738	11.80
OASIS	0.815	11.51	0.702	10.24			0.690	13.41	0.752	12.12
IXI	0.746	8.74	0.699	9.81	0.773	14.00			0.749	11.46
DLBS	0.818	9.43	0.695	10.51	0.705	23.17	0.676	11.40		
Consolidated	0.784	9.80								

MAD - Mean Absolute Difference (years)

Discussion

- Cortical thickness had statistically significant differences between databases in all regions
- Correlation matrices and bootstrapping imply the variance is similar between databases
- When calibrating aging models it is best to use data with similar to the data you'll be testing on
- Large scale databases should be combined with caution

Acknowledgements

- Groups which shared their databases
- Compute Canada (WestGrid)
- Canadian Institutes for Heath Research
- Alberta Health Services
- Alexandru Hanganu

Thanks from Calgary!!!! memacdon@ucalgary.ca STETTO TH The standy