

Modeling Resting Cerebral Perfusion from BOLD Signal Dynamics During Hyperoxia

M. Ethan MacDonald Avery J.L. Berman, Erin L. Mazerolle, Rebecca J. Williams, and G. Bruce Pike

ISMRM 2016, #1700, e-poster Photo: Cougar Ridge, Glacier National Park, British Columbia, Canada

Acknowledgements

- Colleagues in Bruce Pike's Lab
- Canadian Institutes for Health for Research (CIHR)
- NSERC I3T Create Program
- Hotchkiss Brain Institute
- Department of Radiology
- Alberta Health Services

INTERNATIONAL INDUSTRIAL IMAGING

420.

HOTCHKISS BRAIN INSTITUTE

Introduction

- Perfusion parameters: CBV, CBF, and MTT can be calculated with different techniques
- Additional inhaled oxygen changes the concentration of deoxygenated hemoglobin and the signal intensity of blood oxygen level dependent (BOLD) MRI
- This work proposes a new method for obtaining perfusion parameters by the modeling the dynamic passage of oxygen

Experimental Paradigm

4

Methods – assert O₂'s effect on CBF

- One subject was imaged with phase contrast velocity mapping under normoxia and hyperoxia (inhaling 70% oxygen)
- Flow volume was measured at several segments for Bland Altman analysis
- Three subjects were imaged with arterial spin labeling, with and without hyperoxic stimulus (Correction for T1 of blood)
- Difference images in the CBF maps were calculated

Results – Phase Contrast

Results – Arterial Spin Labeling

Theory

 $\delta S_t \approx \text{TE CBV}_V \Delta [\text{Hb}]$ $CBV_V = \left(\frac{A}{TE} + B\right) \left(\frac{C}{\Delta PaO_2} + D\right) \delta S_t$ $C_a = \phi |Hb| Sa_{O2} + \epsilon Pa_{O2}$ $Sa_{O2} = \frac{1}{\left(\frac{23400}{(Pa_{O2})^2 + 150(Pa_{O2})} + 1\right)}$ $C_{t}(t) = k_{2} TE \left(\frac{S_{T2}(t) - S_{T2}|_{0}}{S_{T2}|_{0}} \right)^{\beta}$ $_{\mathbf{8}} C_{t}\left(t\right) = CBF \ C_{a}\left(t\right) \otimes R\left(t\right)$

Methods

- Images acquired on a GE Discover 750 with a 12 channel head coil
- Five subjects were imaged with a BOLD imaging protocol:
 - EPI TR/TE/flip of 2000 ms/30 ms/80°
 - 64 x 64 x 43

over 224 mm x 224 mm 150.5 mm

- 390 volumes in 13 minutes
- 3-5-5 minute paradigm normoxia - hyperoxia (70%) - normoxia

Methods

- Post processing: motion correction, spatial smoothing
- Calculated t-stat maps using a fixed gamma PDF response (FWHM 60 seconds)
- Implemented the model and calculated perfusion parameters
- Performed deconvolution operation with spectral division
- Performed model fitting with a conjugate gradient lease squares implementation

Results – Statistical Maps

Results – End-tidal Values

Results – Parameters

Results – Concentration Functions

Results – Cerebral Blood Volume (CBV)

Results – Cerebral Blood Flow (CBF)

Results – Mean Transit Time (MTT)

Results – GM and WM Measurements

	CBF (ml 100g-1 min-1)		CBV (ml 100g-1)		MTT (seconds)	
	GM	WM	GM	WM	GM	WM
Subject 1	61.2	26.5	1.57	0.93	2.05	2.73
Subject 2	64.4	24.1	1.07	0.78	2.54	3.91
Subject 3	82.2	34.4	1.84	1.11	1.64	2.12
Subject 4	59.7	27.2	1.97	1.25	2.48	3.39
Subject 5	86.1	30.1	2.79	1.46	2.53	3.47
Average	70.7	28.5	1.85	1.11	2.25	3.12

Discussion – Part 1

- Phase contrast and arterial spin labeling asserted no significant change in CBF during this hyperoxia stimulus
- Shorter repeated blocks (like in the abstract) were found to be undesirable as the slow hyperoxia stimulus took longer to plateau
- No problems with partial volume effects as the arterial function is derived from the end-tidal measurements

Discussion – Part 2

- This method demonstrates a new contrast mechanism for obtaining perfusion parameters
- Very slow uptake allows for more images unlike gadolinium passage
- Perfusion parameters are weighted towards the venous circulation
- No injection required, and still able to detect to longer delayed times (unlike ASL)

References

1. Ogawa S, Lee T-M, Nayak AS, Glynn P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 1990;14(1):68-78.

2. Buxton RB. Introduction to Functional Magnetic Resonance Imaging: Principles and Techniques: Cambridge University Press; 2009.

3. Tofts PS. Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 1997;7(1):91-101.

4. Calamante F, Gadian DG, Connelly A. Delay and dispersion effects in dynamic susceptibility contrast MRI: Simulations using singular value decomposition. Magn Reson Med 2000;44(3): 466-473.

5. Buckley DL. Uncertainty in the analysis of tracer kinetics using dynamic contrast-enhanced T1-weighted MRI. Magn Reson Med 2002;47(3):601-606.

6. MacDonald ME, Frayne R. Cerebrovascular MRI: a review of state-of-the-art approaches, methods and techniques. NMR Biomed 2015;28(7):767-791.

7. Severinghaus JW. Simple, accurate equations for human blood O2 dissociation computations. J Appl Physiol 1979;46(3):599-602.

8. Cui W, Zhu X-H, Vollmers ML, Colonna ET, Adriany G, Tramm B, Dubinsky JM, Oz G. Noninvasive measurement of cerebral oxygen metabolism in the mouse brain by ultra-high field 170 MR spectroscopy. J Cereb Blood Flow Metab 2013;33(12):1846-1849.

9. Haddock B, Larsson HBW, Hansen AE, Rostrup E. Measurement of brain oxygenation changes using dynamic T1-weighted imaging. Neuroimage 2013;78(0):7-15. 12. Bulte DP, Chiarelli PA, Wise RG, Jezzard P. Cerebral perfusion response to hyperoxia. J Cereb Blood Flow Metab 2006;27(1):69-75.

10. Blockley NP, Griffeth VEM, Germuska MA, Bulte DP, Buxton RB. An analysis of the use of hyperoxia for measuring venous cerebral blood volume: Comparison of the existing method with a new analysis approach. Neuroimage 2013;72(0):33-40.

