

23rd Annual Meeting & Exhibition • 30 May–5 June 2015 SMRT 24th Annual Meeting • 30–31 May Toronto, Ontario, Canada

Declaration of Relevant Financial Interests or Relationships

Poster Presenter: Mike Smith

I have no relevant financial interest or relationship(s) to disclose with regard to the subject matter of this presentation.

Acknowledgements

NSERC Discovery Grant (MS) NSERC Create I3T Scholarship (PA) NSERC Scholarship (JW) AITF Scholarship (JW) The University of Calgary

Overcoming the Image Position-Dependent Resolution Inherent in DFT and CS Reconstruction

Michael Smith^{1,2}, Jordan Woehr¹, Mathew E. MacDonald^{2,3} and Paniz Adibpour¹ (Contact: Mike.Smith@ucalgary.ca)

¹Electrical and Computer Engineering, ²Radiology ³Seaman MR Family Research Centre University of Calgary, Calgary, Alberta, Canada

Position Dependent Resolution in GE Phantom after k-space truncation

Hi-Resolution (512 x 512) **DFT Reconstruction**

All Comb tines have EQUAL HIGH RESOLUTION

20 cm / 256 < 0.1 cm

Low Resolution (128 x 128) **DFT Reconstruction**

Tines 1 and 4 have LOWER RESOLUTION than Tines 2, 3 and 4

F) 128X128 CS

(33% SAMPLED)

5

Adipour and Smith, "Overcoming Field of View Position-dependent Image Quality Exhibited in DFT and Compressed Sensing Reconstructions of Truncated Magnetic Resonance k-space Data Sets", submitted MRI, May 2015

E) 128X128 IDFT

(100% SAMPLED)

Hint on solving MR problem

• Smith (1993) investigated industrial signals from a rotating gas compressor

ge Position-Dependent Resolution Inhere

DFT and CS Reconstruction

- Need to measure compressor *P-V curve* to calculate efficiency. Added pressure sensor to compression chamber. Volume determined by position of piston driven by rotating engine
- Time domain signal is noisy with certain dominant frequencies caused by compressor and pressure monitor channel resonances

• Theoretical solution: Re-analyse *PV-curve* after frequency domain filtering

M. R. Smith, "FFT - fRISCy Fourier transforms," Microprocessors and Microsystems, Vol. 17:9, pp.507 - 521, 1993

to compression chamber. piston driven by rotating

Synchronous Sampling Reconstruction of MRI data

- Compressor signals and MRI k-space data are different.
 - Compressor signals were infinitely long and easy to manipulate to provide Synchronous Sampling conditions.
- How can we use Synchronous Sampling characteristics to improve the resolution of DFT reconstructions from truncated MRI k-space data?
- We have identified that

MRI Synchronous Sampling Reconstruction (SSR)

can improve resolution by deliberately manipulating the k-space data characteristics through pre- and postprocessing approaches to maximize the number of basis functions

present in the truncated data.

Adipour and Smith, "Overcoming Field of View Position-dependent Image Quality Exhibited in DFT and Compressed Sensing Reconstructions of Truncated Magnetic Resonance k-space Data Sets", submitted MRI, May 2015 #3406

#3406

Signal types present after truncating *k*-space from *512x512* to *128 x 128*

Broad signals in the image domain which are narrow in k-space domain

 No resolution change as these signals are not "truncated" at 128 x 128 size.

Overcoming the Image Position-Dependent Resolution Inhere

Narrow signals in the image domain which are wide in k-space domain

- HIGHER image resolution
 for k-space data components "Close to being 128 x 128 basis functions"
- LOWER image resolution for k-space data components "Not close to being 128 x 128 basis functions"

Resolution Changes are a "Sampling Artifact" of 128 x 128 Point Spread Function

Adipour and Smith, "Overcoming Field of View Position-dependent Image Quality Exhibited in DFT and Compressed Sensing Reconstructions of Truncated Magnetic Resonance k-space Data Sets", submitted MRI, May 2015

Adipour and Smith, "Overcoming Field of View Position-dependent Image Quality Exhibited in DFT and Compressed Sensing Reconstructions of Truncated Magnetic Resonance k-space Data Sets", submitted MRI, May 2015

Overcoming the Image Position-Dependent Resolution Inhere in DFT and CS Reconstruction

#3406

Approaches to fix problem

- SS Plan Ahead Image Domain (SS-PAID): Ensure SS conditions by *PHYSICALLY ADJUSTING FOV* so that fine detail of interest is placed at the centre of 128 x 128 voxel
- SS K-space Fourier Shift Reconstruction (SS-FSR): Ensure SS conditions by **POST-PROCESSING FOV ADJUSTMENT** so that fine detail of interest is placed at the centre of 128 x 128 voxel.
 - Fourier relationship -- x-direction spatial shift of p% of the FOV equivalent to multiplying the k-space data by $exp(-j2\pi pk / N)$
- SS Targeted K-space Re-truncation (SS-TRT): POSTPROCESSING TO RE-TRUNCATE K-SPACE to ensure that texture pattern or fine detail will become described by k-space basis functions

RESULTS

Position-Dependent Resolution Inher

DFT and CS Reconstruction

A) Original 512 x 512 DFT reconstruction.

128 x 128 DFT reconstruction resolution changes between B) Original and C) 0.40% FOV shift (0.1 cm).

The bar plots are the intensities of the cross-section through the GE phantom tines marked by the thin white line.

15

#3406

DCT compressed sensing reconstructions also show position resolution changes. D) Original, E) 0.20% and F) 0.40% FOV shifts across 128 x 128 images.

The bar plots are the intensities of the cross-section through the GE phantom tines marked by the thin white line.

DCT compressed sensing reconstructions combined with SS-TRT to 108 x 108
G) Original, H) 0.34% and I) 0.50% FOV shifts across 128 x 128 images.

The bar plots are the intensities of the cross-section through the GE phantom tines marked by the thin white line.

17

