

Brain Battery Imaging Protocol for Quantification

M Ethan MacDonald, M Louis Lauzon, Richard Frayne

Biomedical Engineering, Radiology, Clinical Neurosciences, and Hotchkiss Brain Institute, University of Calgary, Alberta, Canada Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, Alberta, Canada

PURPOSE

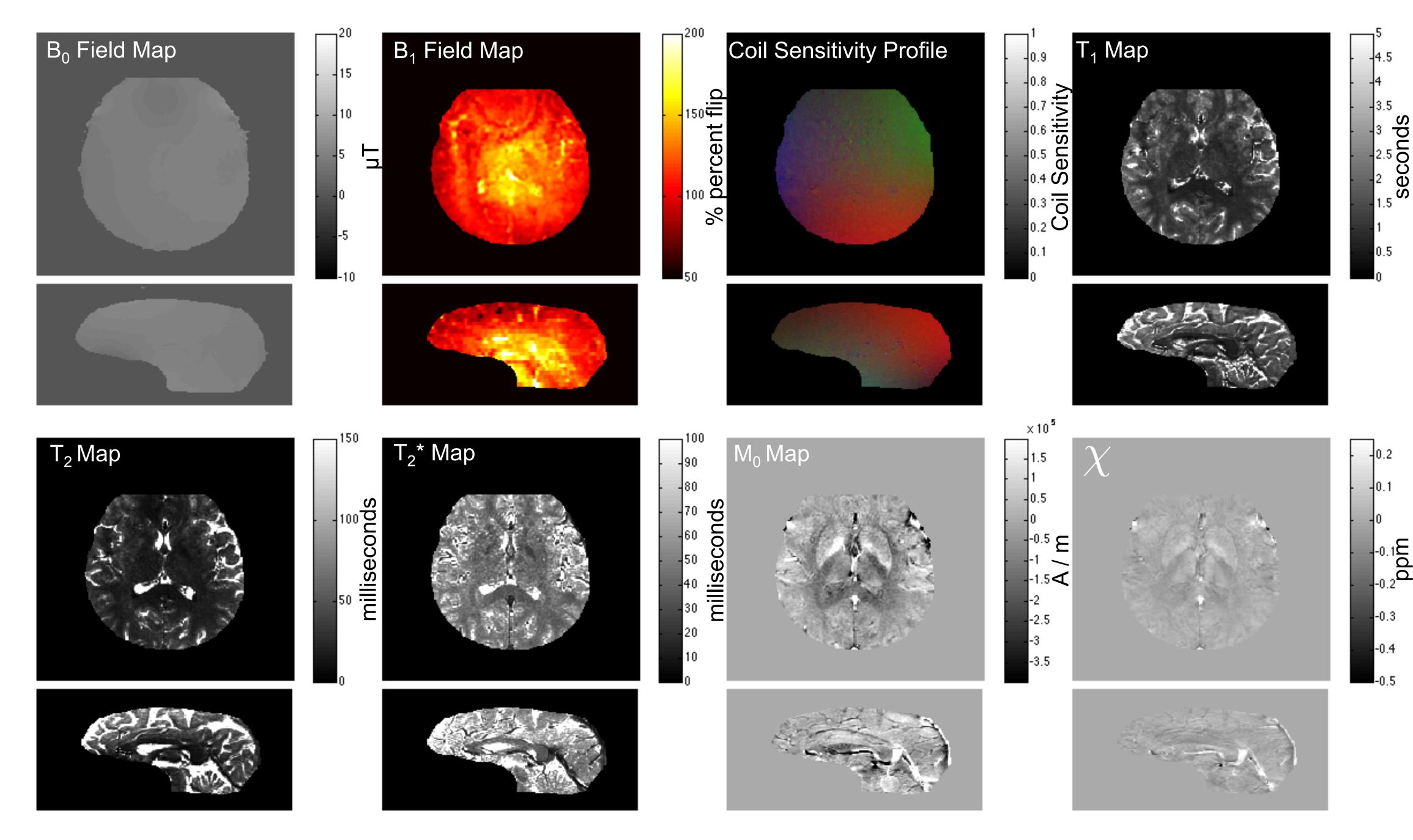
- To quantify MR parameters of the brain in a timely fashion
- Target parameters include: B_0 and B_1 field inhomogeneity, coil sensitivity profiles, T_1 , T_2 , T_2^* , net magnetization (M_0), and magnetic susceptibility (χ)
- Whole brain coverage was achieved with 1 mm isotropic resolution in a scan time of <26 minutes

METHODS

- Imaging was performed on a 3T MR Scanner (Discovery 750, GE Healthcare, WI) with an 8 channel head coil
- The brain of 26 year old healthy female was imaged with the sequence in Table 1

Table 1: Summary of protocol and para	meters.
---------------------------------------	---------

	Parameters										
	Sequence	FOV (cm)	TR (ms)	TE (ms)	Flip (degrees)	BW (+kHz)	Slice Thickness	Matrix Size	Aqu Time	Num Echos	PI Acceleration
#					(degrees)	(±КП2)	(mm)		Thire	Lenos	Factor
1	multi echo SPGR	25.6 × 25.6 × 12.8	2000	2.2-21.7 ms	15	62.5	2	256 × 256 × 128	4:12	8	2
2	B1 mapping	25.6 × 25.6 × 12.8	16-60 ms	1.7 ms	60	62.5	4	128 × 128 × 32	5:53	1	1
3	SPGR 1	25.6 × 25.6 × 12.8	7.0 ms	3.1 ms	4	31.25	1	256 × 256 × 128	3:58	1	1
4	SPGR 2	25.6 × 25.6 × 12.8	7.0 ms	3.1 ms	18	31.25	1	256 × 256 × 128	3:58	1	1
5	bSSFP 1	25.6 × 25.6 × 12.8	6.7 ms	3.3 ms	4	125	1	256 × 256 × 128	3:47	1	1
6	bSSFP 2	25.6 × 25.6 × 12.8	6.7 ms	3.3 ms	18	125	1	256 × 256 × 128	3:47	1	1


- Dipole inversion was used to calculate the magnetic susceptibility (χ) [2]
- T₂* was also calculated from sequence 1, by fitting the echo decay curve

RESULTS

Figure 1 shows axial and sagittal slices of the desired

25:35

- From the image data brain extraction and mask erosion where applied
- Using sequence 1, the induced magnetic field (B₀), was calculated by fitting the phase evolution to the echo time
- Using the magnetic field, background field removal was applied [1] to obtain the M₀ estimate
- The B₁ field map was calculated using sequence 2 and the method described by Voigt, et al. [3]
- Coil sensitivity profiles were estimated from sequence
 3, which obtained images from each of the coils
- T1 and T2 maps were calculated using DESPOT1 and DESPOT2, respectively, as described by Deoni, et al.
 [4], with the B1 map and sequences 3 through 6

parameters

Total Time

- Images of similar quality to those found in the respective references were produced in this experiment
- The signal to noise ratio of the respective maps were of high quality

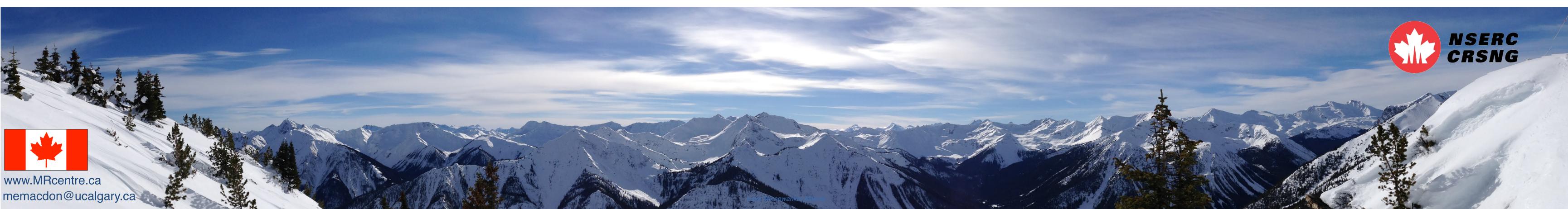
DISCUSSION

- Here we selected methods and parameters that provide key MR parameters within a limited acquisition time
- The level of mask erosion required to calculate the volumes was undesirable; future work will need to limit the level of erosion
- Validating the accuracy of the measurements against other techniques could also improve the confidence in the measurements
- Data collected by this battery can be used for improved simulation of the Bloch equations with a Sum of Spin Vectors model [5]
- Production of a host of synthetic images would be possible from these data
- Quantifying additional parameters such as cerebral blood flow, diffusion and velocity would be an

Figure 1: Parameter maps obtained from the protocol.

additional advancement to the model

REFERENCES


[1] Hongfu S, et al., MRM, 2013 (In Press)
[2] Liu J, et al., Neuroimage, 2013;59(3):2560-2568
[3] Voigt T, et al., MRM, 2010;64(3):725-733
[4] Deoni, et al., MRM, 2005;53(1):237-241
[5] Kwan RKS, et al., IEEE TMI,

1999;18(11):1085-1097

