
 

 

Determining the Cramer-Rao Lower Bound  
in Magnetic Resonance Imaging  

 
Purpose 
Often when observing and processing medical images it is 
desired to minimize the noise in the images and increase 
the signal, which leads to a higher signal to noise ratio 
(SNR) and potentially superior detection of pathology. In 
magnetic resonance (MR) imaging experiments where it is 
of interest to detect changes in tissue parameters locally, 
maximizing for SNR alone will not necessarily give the 
best result, as contrast to noise ratio (CNR) must also be 
taken into consideration. Whether the goal is to optimize 
for SNR or CNR, minimizing the variance (or mean square 
error) of the image data becomes the central goal. 
 There are several imperfections in modern MR scan-
ners, such as: 1) non-uniform static magnetic field (B0 in-
homogeneity) [1], 2) non-uniform excitation pulse (B1 in-
homogeneity) [2], 3) non-uniform sensitivity profile of the 
receiver coils [3], 4) non-linearity of the gradient fields 
used for spatial localization (gradient warping) [4], 5) 
quantization effects [5], and 6) correlated noise [6]. Exten-
sive studies have been undertaken in order to find correc-
tion schemes for these imperfections, and have led to 
changes in the way that images are reconstructed from the 
acquired k-space data. All of these aspects change the 
propagation of uncertainty (i.e., noise) from the acquired 
data to the estimated (or reconstructed) image. 
 The Cramer-Rao Lower Bound (CRLB) can be used to 
determine the minimum achievable variance of estimation 
parameters from measurements, assuming that the noise is 
unbiased (i.e., the best solution in the minimum variance 
unbiased (MVU) estimator sense) [7]. The CRLB is a 
theoretical bound that cannot be improved upon if the es-
timate is unbiased. When Gaussian noise is used as part of 
a signal model, the CRLB can often be determined analyti-
cally and easily validated by simulations. MR imaging 
technologies involve complicated system models, particu-
larly spatial signal models. The signal model itself be-
comes a function of the biological sample, and therefore 
determining the CRLB is experiment specific. CRLB op-
timization has been used for improving several MR imag-
ing experiments [8,9], but the analysis is often limited to a 
single experimental type. 
 It is our overall hypothesis that the CRLB can be im-
proved upon, under certain conditions, with non-linear re-
construction processing such as compressed sensing (CS), 
generalized autocalibrating partially parallel acquisitions 
(GRAPPA), or sensitivity encoding (SENSE) that are bi-
ased approaches. Some of these methods are commonly 
used to accelerate MR imaging in clinical protocols. When 
to use these non-linear methods is often determined with a 

trial-and-error approach (i.e., what method works best?), 
but by defining the CRLB, we could be lead to a realiza-
tion of the quantitative parameters under which switching 
from conventional fast Fourier transform-based (FFT) re-
construction to one of the more sophisticated approaches is 
justified. 
 Here, we explain a generalized model for assessing the 
theoretical CRLB of the MR acquisition channel. Simula-
tions using a digital brain phantom are performed to dem-
onstrate the accuracy of this derivation, and then, the simu-
lations are modified to show how the previously described 
MR system imperfections change the CRLB. 
 
Methods 
MR Signal Model 
The signal model was constructed from brain anatomy im-
ages provided by the Montreal Neurological Institute [10]. 
Data was acquired at 1 mm3 isotropic resolution and was 
of size 181×217×181 and was padded with zeros to 
256×256×192. Data was segmented into ten separate tissue 
categories: 1) background, 2) cerebral spinal fluid (CSF), 
3) gray matter (GM), 4) white matter (WM), 5) fat, 6) 
muscle/skin, 7) skin, 8) skull, 9) glial matter, and 10) con-
nective tissue. MR parameters at 3 T were assigned to the 
each tissue type with values as per Table 1. 
 
Table 1: MR properties used for each tissue type at 3 T. 

Tissue Type T2, 
[ms] 

T1 
[ms] 

M0 Freq Shift 
[Hz] 

Background 0 0 0 0 
CSF 2200 4500 1.00 0 
GM 100 1140 0.80 0 
WM 80 800 0.65 0 
Fat 60 290 0.90 -440 
Muscle/Skin 50 1080 1.00 0 
Skin 50 1080 1.00 0 
Skull 0 0 0 0 
Glial Matter 100 1140 0.80 0 
Connective 50 1080 1.00 0 

 
 Non-uniformity of the B0 and B1 fields were simulated 
for the data volume using ranges that are observed with 
modern MR systems [11]. These fields were taken into 
consideration when the signal was calculated. Imperfec-
tions from coil sensitivity profiles where introduced using 
a Gaussian kernel centered outside the imaged volume 
and, placed around the imaged volume in a typical 
birdcage coil configuration [12]. 



 

 

 Two separate signal equations were used to calculate 
MR signal from the assigned parameters, however other 
signal equations could be substituted depending on the ap-
plication pulse sequence. The two pulse sequences simu-
lated in this study were spin echo (SE) and spoiled gradi-
ent recalled echo sequences (SPGR). 

 SE: S = M0 1 − 2e−((TR−TE )/2)/T1 − e
−TR /T1( ) e−TE /T 2  [1a] 

  SPGR: S =
M0 1 − e

−TR /T1( )
1 − cos α( ) e−TR /T1 sin α( ) e−TE /T 2* .  [1b] 

 The k-space signal model was then generated from the 
simulated image signal model for both pulse sequence 
types. 

   k
r ,m( ) = FFT C GW S r( )[ ],m[ ]⎡⎣ ⎤⎦ , [2] 

where  
r is the spatial position (i.e., [x,y,z]), the operations, 

FFT[•], GW[•] and C[•] denote the Fourier transform op-
eration, the gradient non-linearity operation computed with 
spherical harmonics [13], and the individual coil sensitiv-
ity profiles (one for each channel), respectively,  and m 
represents the particular imaging coil. In these experiments 
a 32 channel system was simulated. S(•) is the MR signal 
calculated from Eq [1].   
MR Imaging Channel Model 
The MR channel model in complex; several correction 
schemes are performed during image reconstruction in or-
der to improve image quality. However, for derivation 
purposes, we remove these imperfections from our equa-
tions to present a simplified and best-case scenario. The k-
space signal model from Eq [2] is sampled using the well-
established frequency-encoding equation, it is at this stage 
where noise is introduced with a complex circularly nor-
mal (CN) distribution, having a mean of zero and a covari-
ance of σ k

2Q . 

  
 
k tn ,m( ) = γ G r( )dt + CN (0,σ k

2
Q)

t0

tn
∫ , [3] 

where γ is a gyro-magnetic constant, and G(•) is the gradi-
ent-waveform function. In practical circumstances it is not 
always true that noise will have zero mean, however, in 
this model the noise is deterministic, and so, if there were 
a bias due to noise at this level it could be measured and 
removed. Furthermore, in practice the noise from different 
channels would be correlated, but for this best-case sce-
nario we assume the noise is uncorrelated and that the Q 
matrix is diagonal. 
 Using the inverse FFT, and combining the coil images 
with a sum-of-squares operation, the image signal becomes 
a function of chi-squared distributed noise, 

   Ŝ(
r ) = S(r ) + χM

2 . [4] 

A central chi-squared distribution can be approximated as 
a normal distribution having a mean and a variance of  
M σ

2
k  and 2M σ

2
k , respectively, where M is the number of 

summations. When the central chi-squared noise distribu-
tion is broken into its first and second moments, the signal 
estimation function becomes, 

   Ŝ(
r ) = S(r ) + E N (µ,σS

2 )⎡
⎣

⎤
⎦ + N (0,σS

2 ) , and [5] 

   Ŝ(
r ) = S(r ) + µS + N (0,σS

2 ) . [6] 

The noise introduces a bias to each signal value. A priori 
knowledge of the noise introduced in k-space can lead to 
more accurate estimates of individual voxel signal estima-
tions. A bias is introduced as the signal value uncertainty 
does not have zero mean, and thus, the estimated image 
becomes a function of the noise. If the k-space signal noise 
level is measured then this bias can be determined and re-
moved. 
 Letting  θ =


S + E[ µS ] , then the likelihood function of 

the signal in a given pixel is defined by, 
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e
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2σ 2
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, [7] 

and then the score of the likelihood function is: 

  
 

d ln p ˆ

S;θ( )

dθ
= −σS

2 ˆ

S − θ( ) . [8] 

The CRLB and the Fisher information, are 1 / σ 2S  and σ 2S , 
respectively. It should be noted that this expression is the 
classical formation of the CRLB [7]. 
Computer Simulation 
Simulations were first performed in order to validate that 
the CRLB derivation was accurate. Using the brain k-space 
signal model, and without any distortions (from B0 inho-
mogeneity, B1 inhomogeneity, gradient warping, coil sen-
sitivity and correlated noise), a Monte Carlo simulation 
was undertaken. The k-space signal model was sampled 
with known gradient trajectories inherent to the chosen 
sequences (SE: TR = 1500 ms, TE = 750 ms; and SPGR: 
TR = 3.4 ms and TE = 1.8 ms, flip = 10°). The cross corre-
lation matrix, Q, was modeled as qij = 1 - ea( j - i ), with 
a=0.1. All simulations in this study were performed with 
1000 trials. 
 The distributions of the measured signals were re-
corded (to create histograms) along with the variance and 
mean deviation from the true signal values. 
 The signal model was then generated with distortion as 
described in the MR signal model section. Correction for 
each of these distortion effects were also performed during 



 

 

the simulated reconstruction. Again the distribution of the 
measured signal, and difference from mean were recorded. 
It was expected that the SNR will be spatially dependant 
like some of the distortion effects, and for this reason brain 
maps with values of variance were calculated. 

 A numerical comparison was then performed between 
the undistorted and distorted simulations to investigate 
how closely the CRLB approximates the best-case sce-
nario found in the derivation, given the described distor-
tion effects and the respective corrections. 

 
Figure 1:Each row has 5 images, representing the several spatial locations (z = 35, 50, 65, 80, 120) in the phantom. Slice 
thickness was 1 mm. The first row is the MR signal values calculated for the spin echo sequence, and can be used as a 
reference for the following rows. The second row is a map of the variance from the ‘best case scenario’ simulation (also 
using a spin echo technique). The third row contains variance maps, also using spin echo, but with the described non-
uniformity and non-linearity effects The fourth row is also a variance map, with distortions, but calculated with the SPGR 
sequence. Note: The second row required a multiplier of 103 in order to be visualized with row 3. 
 
Results 
We observed a factor of >103 in the CRLB between best-
case scenario and non-uniform and non-linear case. Fig 1 
depicts some of the results obtained in this simulation 
study. As expected (second row of Fig 1) there is a gen-
eral uniformity across the images in the case where there 
is no spatial distortion, as we expected, each of the im-
ages had similar variance values across space and tis-
sues. The measured variance values closely matched the 

values calculated analytically using the derivation for 
several levels of k-space noise. The images did not show 
a purely uniform distribution of variance, we observed 
where the signal was lower, the variance did not always 
appear Gaussian, and thus the assumption used in the 
derivation that chi-squared noise would become Gaus-
sian holds better in higher SNR cases. This finding 
closely matches reports in literature. 



 

 

 The third row of Fig 1 shows the variance maps 
across the brain for the SE sequence including distortion 
effects. The fourth row of Fig 1 shows the variance maps 
across the brain for the SPGR sequence including distor-
tion. 
 Fig 2 shows histograms of a signal pixel of GM lo-
cated at z=50, x=100, y=100 (the iso-centre is assumed 
at z=96.5, x=128.5, y=128.5). The two empirically de-
rived probability mass functions indicate the improve-
ment that could be observed by better correction of the 
distortions. 
 
Discussion 
This work is interesting as it demonstrates that, although 
MR systems have progressed extensively in the last 20 
years, opportunity exists to improve the implementation 
with respect to minimizing image noise. We note, how-
ever, that it may not be realistic to actually meet the de-
rived CRLB as optimizing to reduce one type of distor-
tion may introduce another undesired effect. 
 As stated previously, it is our overall hypothesis that 
the CRLB can be improved upon with the images esti-
mators that are biased. This work has demonstrated that 
we should not attempt to improve upon the theoretically 
derived CRLB, but rather use the values determined nu-
merically that first take machine imprecision and other 
errors into account. 
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