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Abstract

Magnetic resonance (MR) perfusion imaging is a clinical technique for measuring brain blood flow parameters during stroke and other
ischemic events. Ischemia in brain tissue can be difficult to accurately measure or visualize when using MR-derived cerebral blood flow
(CBF) maps. The deconvolution techniques used to estimate flow can introduce a mean transit time-dependent bias following application of
noise stabilization techniques. The underestimation of the CBF values, greatest in normal tissues, causes a decrease in the image contrast
observed in CBF maps between normally perfused and ischemic tissues; resulting in ischemic areas becoming less conspicuous. Through
application of the proposed simple extrapolation technique, CBF biases are reduced when missing high-frequency signal components in the
MR data removed during deconvolution noise stabilization are restored. The extrapolation approach was compared with other methods and
showed a statistically significant increase in image contrast in CBF maps between normal and ischemic tissues for white matter (Pb.05) and
performed better than most other methods for gray matter. Receiver operator characteristic curve analysis demonstrated that extrapolated
CBF maps better-detected penumbral regions. Extrapolated CBF maps provided more accurate CBF estimates in simulations, suggesting that
the approach may provide a better prediction of outcome in the absence of treatment.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

Ischemic stroke is a devastating disease that can
potentially result in both disability and death. Ischemic
stroke occurs when an embolism or thrombus occludes an
artery that feeds blood to a region of brain tissue. The block-
age restricts blood flow to this region, and if left untreated, the
affected tissue may become infarcted [1]. With prompt
treatment, some of the ischemic, but not yet infarcted, tissue
may be salvaged. In the proposed and idealized model, this
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ischemic but not infarcted tissue is referred to as the “tissue at
risk” or the penumbral region [2]. The concept of tissue
penumbra suggests that accurate knowledge of cerebral blood
flow (CBF) is of importance in assessing tissue affected by a
blockage that may be still salvageable with proper treatment.

Magnetic resonance (MR) perfusion-weighted imaging
(PWI) can estimate CBF in the brain. Using fast MR imaging,
changes in image signal intensity are sampled as a tracer
(contrast agent) passes through the brain's circulation system.
From these temporally resolved image data, important blood
flow parameters including time to peak (TTP), CBF, cerebral
blood volume (CBV) and mean transit time (MTT) can be
obtained [3]. When combined with diffusion-weighted
imaging (DWI), PWI has been demonstrated to predict tissue
outcome in acute ischemic stroke cases. The MR perfusion–
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diffusion mismatch theory [4] is a conceptual model that
allows penumbral tissue to be determined soon after the onset
of stroke (i.e., within 3–6 h) by comparing abnormalities on
DWI to PWI deficits. Hyperintense lesions on diffusion
images are assumed to be infarcted tissue that is not likely to
recover with treatment [5]. Perfusion imaging shows the
tissue affected by the blockage as having reduced flow, which
may become infarcted if normal flow is not reestablished. By
using DWI and PWI for stroke assessment, an estimate of the
volume of salvageable tissue can be obtained, providing
valuable information for determining the appropriate course
of patient treatment.

In PWI studies, the cerebral vascular system is modeled as
a linear system of concentration functions [6–10]. The MR
signal intensity time signals are converted to concentration
time series signals; then the concentration function from a
feeding artery, Ca(t), the tissue concentration function, CT(t),
and the flow-scaled system response, CBF·R(t) can be
related by

CT tð Þ = CBF · R tð Þ � Ca tð Þ; ð1Þ

where ⊗ denotes the convolution operator, and CBF·R(t) is
the flow-scaled mass density function response bounded
betweenCBF and 0 (i.e., max(R(t) )=1;max(CBF·R(t))=CBF).
Eq. 1 may be used to solve for CBF in a variety of ways, but
most quantitative methods require signal deconvolution.
Deconvolution is an ill-posed problem and requires regulari-
zation in the presence of noise. The method of regularization
(and the associated parameters) used when performing
deconvolution can change resulting CBF values and distort
the perceived patient prognosis. All deconvolution methods
reduce the high-frequency components of the residue function.

Deconvolution can be performed either in the time
domain, through matrix manipulation or in the frequency
domain, by dividing corresponding spectral components
[6,7]. Both approaches are theoretically equivalent [8]. Both
are also ill-posed problems, becoming unstable due to high-
frequency noise components after the deconvolution oper-
ation. Noise reduction is achieved either implicitly (in the
case of regularizing a matrix inversion in the time-domain
approaches) or explicitly (low-pass filtering of spectral
components in the frequency-domain approaches) [8]. Both
regularization and low-pass filtering are key steps to reduce
high-frequency noise, but come with the penalty of also
reducing high-frequency components of the desired signals,
artificially creating an erroneous CBF dependence on tissue
MTT. Short MTT signals (healthy tissue) are broadest in the
frequency domain and are thus more heavily filtered [11].
Conversely, longer MTT tissues (such as in stroke-affected
tissue) produce time signals with less energy at higher
frequencies and are less affected by filtering. With this
systematic underestimation of the CBF values from healthy
tissue, current deconvolution-based approaches effectively
decrease the image contrast between normal and ischemic
regions, making stroke-affected regions less conspicuous.
Several research groups have investigated methods for
improving this process and providing more robust CBF
estimates. Østergaard et al. [6,7] demonstrated how CBF
maps could be created by regularizing the deconvolution
process. They showed that the optimal thresholding (or
filtering) value was a function of the image signal-to-noise
ratio (SNRI). These optimal filtering techniques used the
same threshold across the entire image. Later studies by Liu
et al. [12] proposed an adaptive filtering scheme that varied
the effective threshold and thus allowed more high-
frequency energy to be retained. The level of noise filtering
by Liu et al. was based on an assessment of the concentration
time-course SNR ratio (SNRC). Ridge-based regularization
techniques have also been implemented, such as Tikhonov
regularization, which do not remove any information but
rather introduces energy across the diagonal of the matrix
facilitating its inversion [13]. Introduction of energy across
the matrix diagonal can be effective but does not always
ensure inversion and can itself result in erroneous values.
Frequency-domain signal modeling, such as using least-
square fits to Lorentzian functions, has been proposed for
estimation of the signal [14]. Model-independent estimation
techniques, such as the autoregressive moving average [15]
or generalized cross-validation [16], have also been
proposed but, in general, are difficult to implement as
current image acquisitions have relatively few time points to
process and build these elaborate models robustly.

Most commonly used deconvolution-based techniques
provide relative CBF estimates due to partial voluming and
other sources of error. Cross-calibration [9], a process
where the CBF of regions of normal WM is scaled to 22 ml
100 g−1 min−1, is nearly always used to provide more
physiologically correct flow values in normal tissue.
However, scaling to force the underestimated WM CBF
value to take the value 22 ml 100 g−1 min−1, simulta-
neously, introduces a systemic overestimation in the CBF
for tissues with longer MTT values [16] changing the
outline of the penumbra region. Cross-calibration, because
the maps are linearly scaled, does not impact the normal-
ischemic tissue image contrast in CBF maps.

We expect that the proposed simple extrapolation
approach, by attempting to restore the high-frequency
components of the filtered flow-scaled residue function,
will minimize the MTT-dependent errors and enhance the
normal-ischemic image contrast in stroke patients. This will
produce a more robust CBF map in perfusion experiments
and improve conspicuity between healthy and ischemic
tissue. In this work, simulation of perfusion signals was
undertaken to find optimal estimators and parameters that
can be used for deconvolution in our clinical imaging
protocol. CBF was calculated with four common deconvolu-
tion methods and with a new extrapolation-based method.
Perfusion imaging data sets were collected from 10 ischemic
stroke patients and then reconstructed with each of the five
methods using the optimized parameters. Statistical analysis
was then undertaken to test for the hypothesized change in
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image contrast between healthy and ischemic tissues.
Finally, an assessment of the ability to predict final tissue
state in one untreated patient was performed using receiver
operator characteristic (ROC) analysis.
2. Theory

With MR PWI, a four-dimensional data set (a temporal
series of images) is collected during the passage of a contrast
agent bolus traversing through the brain. Paramagnetic
contrast agents, such as gadopentetate dimeglumine, cause a
local regional shortening in T2 and T2⁎ relaxation times,
resulting in a reduction in localized MR image signal
intensity. The MR signal intensity functions are converted to
concentration functions using well-established relationships
[3,6,7] and are modeled with an exponential,

S tð Þ = S0e
− TE

k C tð Þ; ð2Þ

where S0 is the baseline MR signal intensity, TE is the echo
time, k is the proportionality constant, and C(t) is the contrast
agent concentration time function. Inverting Eq. 2 allows the
measured MR signal intensity functions to be converted to
concentration functions, C(t)= −k/TE ln(S(t)/S0).

Four deconvolution methods are compared in this study as
they represent benchmarks against which the simple extra-
polation approach can be assessed. Three of the methods are
time-domain regularization approaches, where a linear system
of equations is formulated, CT=CBFCaR, and inverted to
solve for CBF. CT is the contrast concentration in the tissue
vector, Ca is the contrast concentration in a supplying artery
(or the arterial input function) matrix, and R is the tissue
residue function vector. The time-domain deconvolution
methods require that Ca be inverted. Regularization of Ca is
required prior to inversion in the presence of noise.

Previously reported methods tend toward the use of time-
domain inversion techniques based on singular value
decomposition (SVD)-based deconvolution [6,7,9,10,17].
The approaches explored in this study include the block-
circulatant SVD (bcSVD) [8,18,19], Tikhonov regulariza-
tion (sometimes referred to as ridge regularization) [13,20],
and Tikhonov SVD (TikhoSVD) [20]. In addition to these
time-domain approaches, spectral division (SD) is also used
as a benchmark [6–8]. In this approach, the signals are
converted to their Fourier domain representations and
divided. Each of these methods, and the mechanisms they
use to control noise instabilities, are described in more detail
in the following sections.

2.1. Block-circulatant SVD

bcSVD has been demonstrated to be superior to the
previously implemented standard SVD method by being
delay insensitive [18,19]. Ca is decomposed using SVD into
UΛVT, where Λ is a diagonal matrix of the eigenvalues, λi.
The inverse of Ca can be found by the linear product, V [diag
(1/λi)]U
T. Eigenvalue thresholding is used by setting to zero

all eigenvalues below a particular threshold, PSVD. Other
processing techniques can attempt to smooth the eigenfunc-
tion or minimize error in a least-squares sense [20].

2.2. Tikhonov regularization for deconvolution

Deconvolution can also be performed using Tikhonov
regularization [13,16], by inverting Ca in a least-squares
minimization sense. A matrix, Γ, is introduced and is most
often chosen as a scaled identity matrix, αI. A pseudo-
solution can then be found for the flow-scaled residue
function (CBF R) by,

CBFR = CT
aCa + a2I

� �−1
CT
aCT: ð3Þ

2.3. Tikhonov regularization with SVD

Another implementation of Tikhonov regularization is
combined with SVD (these methods are similar but do not
result in the same outcome under all conditions). The matrix
Ca is decomposed with SVD into UΛVT, then the inverse of
Ca is found by the linear product of VGUT, where G is a
diagonal matrix having components, gi, created from the
eigenvalues of Λ:

gi = ki = k2i + a2
� �

: ð4Þ

2.4. SD for deconvolution

In addition to these time-domain formulations, deconvo-
lution can also be performed in the frequency domain with
SD. The CBF·R(f) can be found by,

CBF · R fð Þ = CT fð Þ
Ca fð Þ; ð5Þ

where R(f), CT(f) and Ca(f) are the frequency-domain
representations of R(t), CT(t) and Ca(t), respectively. Noise
causes instability particularly in low-intensity high-frequen-
cy components (Fig. 1A). This erratic behavior is a result of
Ca(f) approaching zero and destabilizing the division. In the
SD approach, low-pass filtering is often applied to remove
the erratic high-frequency components from CBF·R(f). By
taking the inverse Fourier transform of the filtered flow-
scaled system response (i.e., wf (f)·CBF·R(f) ), an estimate of
CBF can be derived. It has been previously shown that low-
pass filtering in the frequency domain is related to PSVD

thresholding in the time domain [8] by way of the applied
frequency-domain window function,

w fð Þ = 1 jCa fð Þ jN PSVD jCa fð Þ jmax
0 :::

;

�
ð6Þ

under the assumption that Ca(f) is monotonically decreasing
with f near |Ca(f)|=PSVD·|Ca(f)|max. Filtering, like time-
domain thresholding, also results in an error with an MTT
dependence (Fig. 1B).



Fig. 1. Simulation results of the residue function and CBF dependence on MTT. (A) The normalized magnitude frequency spectrum of a deconvolved residue
function, for no noise and two noise levels. At higher frequencies with noise, the residue function becomes unstable. Noise has been added (Gaussian
distribution) to MR signal intensities (SNR=S0/σSIGNAL). The MTT was 4.8 s. (B) Noise-free simulations show an increasing error with decreasing MTT and
increasing level of PSVD filtering applied. Higher levels of PSVD are typically required to reduce the impact of high-frequency noise. Deconvolution was
performed with the Fourier-windowed SD method. The equivalent low-pass filter to a PSVD threshold was used (see Eq 6). Other parameters used in the
simulations were as follows: CBV=1.74 ml 100 g−1; ATD=0.1 s; Δt=2 s.
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2.5. Extrapolation-based deconvolution

The proposed simple extrapolation method extrapolates
from the known complex values, of R(f), to estimate
(recover) the high-frequency components of the residue
function truncated during the noise stability procedure. To
reflect the band-limited nature of the residue function, the
R(f) values are set to zero after a defined extent of fre-
quencies (known as the extrapolation length, LEXTRAPOLATE;
Figs. 2A and B). In principle, this operation could be
performed on residue functions obtained from any deconvo-
lution method, but in this study, it will only be applied to
residue functions generated by the SD algorithm.

The CBF error changes proportionally to MTT
(Fig. 1B), which is related to the signal width in the time
domain. The extent of high-frequency extrapolation is set
to be inversely proportional to the frequency width of the
signal. In order to complete the extrapolation procedure
after the initial R(f) estimate has been obtained, an
estimate of MTT (MTTESTIMATE) is required. Since the
width of R(f) in the frequency domain is inversely
related to the duration of R(t) in the time domain, the
integral of the truncated |CBF·R(f)| was used as this
MTTESTIMATE value. The magnitude operation is used to
eliminate arterial tissue delay (ATD) effects on the
estimator. The MTTESTIMATE metric is robustly demon-
strated in the “Results” section both in simulation and in
patient data.

By making the extrapolation length inversely proportion-
al to the MTTESTIMATE value, correction for missing high-
frequency components is achieved. To estimate the filtered
(or thresholded) high-frequency signal components, simple
extrapolation over a length,

LEXTRAPOLATE =
v

MTTESTIMATE
ð7Þ

is performed in the frequency domain, where χ is a
proportionality constant that will be derived empirically
from simulations. Large extrapolation lengths required
Fourier interpolation as the extrapolation lengths were
greater than half the sampling frequency (extrapolated
frequencies could be at orders much higher than what is
sampled). During the extrapolation process, estimates on
these frequency components are achieved.

With the missing high-frequency components corrected,
the discrete time-domain signal will become much sharper,
making it difficult to correctly identify its peak value from
which CBF is estimated. To overcome this problem, the time-
domain signal needs to be interpolated. This is straightforward
to perform in the frequency domain using Fourier interpola-
tion. The R(f) frequency components after LEXTRAPOLATE
where set to zero up to a length 4 N. After performing the
inverse discrete Fourier transform (DFT), the residue function
will be interpolated fourfold, allowing accurate estimates of the
peak value, CBF, to be made.
3. Methods

3.1. Computer simulations

Simulations are undertaken to find optimal deconvolution
parameters, the values used in simulation mimic parameters



Fig. 2. Extrapolation of truncated signals. Extrapolation of the residue function is performed on both the real (A) and the imaginary (B) components of the residue
function. The solid blue lines represent the signal after it has been truncated, and the dashed black lines represent the extrapolation of the signal as it is drawn out
to a length of LEXTRAPOLATE. Both of these signals are normalized. The key parameters used in the creation of the simulation were as follows: CBF=60 ml/100 g/
min; CBV=5 ml/100 g; PSVD=0.2; LEXTRAPOLATE=20 pts; MTT=4 s; Δt=2 s.
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of the current perfusion imaging protocol at our centre
(described more thoroughly in the “Patient data” section).
Concentration time signals are modeled using conventional
estimates described in literature. The arterial input function,
Ca(t), was modeled by a normalized gamma-variate function,

Ca tð Þ =
Cmax t−TAð Þqe− t−TAð Þ=υ

qð Þυeq t N TA

0 :::

;

8<
: ð8Þ

with ρ set to 1.5 and υ set to 3 s−1 [6,12] and TA being the
arrival time of the contrast agent. The residue function, R(t),
was modeled using the single compartmental approximation,

R tð Þ = e
−
t−ATD
MTT t N ATD
0 :::

;

8<
: ð9Þ

where MTT is the MTT of bolus passing through the tissue.
Noise was introduced by first converting the simulated

concentration time functions to MR signal intensity functions
via Eq. 2 and adding Gaussian distributed random noise. The
SNRC was defined as SNRC=S0/σSIGNAL, where S0 is the
baseline signal, andσSIGNAL is the variance of the added noise.

Deconvolution was performed using the simulated noise-
free and noisy Ca(t) and CT(t) signals, and CBF was
determined from the peak of the estimated deconvolved
flow-scaled residue function. A variety of published MR
perfusion deconvolution algorithms (SD, bcSVD,
TikhoSVD and Tikhonov method) were used as benchmarks
to compare against deconvolution with simple extrapolation.

Optimal filtering/thresholding parameters were deter-
mined by minimizing the CBF error across a range of
MTT values. Each of the time-domain deconvolution
methods has a parameter (either PSVD or α) that first needed
to be optimized versus SNRC (ranging from 0 to 50).
Similarly, the post-SD filter cutoff frequency (cf., Eq 7) was
likewise optimized. The measured CBF was compared with
the true expected CBF known from the simulation model
description to obtain a relative error, (CBFmeasured −
CBFtrue)/CBFtrue. The optimal filtering/threshold parameters
were found by minimizing the root mean square (rms) error
(Δrms) of the CBF values over a realistic physiological and
pathophysiological range of MTT values (3 sbMTTb12 s).

To identify key features of and further refine the SD
followed by simple extrapolation method, simulations were
performed to validate the MTTESTIMATE parameter and to
determine the optimal value of χ. The MTTESTIMATE value
was calculated over a larger range of MTT values
(2 sbMTTb20 s) and compared with the known MTT. The
MTTESTIMATE was calculated for CBV values of 5.00 ml
100 g−1 and 1.74 ml 100 g−1, simulating gray matter (GM)
and white matter (WM), respectively.

The simple extrapolation method was implemented; after
SD, the resulting CBF·R(f) signal was padded with zeros
from LEXTRAPOLATE to 4096 points to provide increased
time resolution after the inverse DFT was performed. The
optimal value for the extrapolation constant, χ, was found
for each PSVD, by again finding the value that minimized
Δrms across a range of MTT (3 sbMTTb12 s). The optimal
constant (χOPT) was then set to the value where Δrms was
minimized for a given SD PSVD and, hence, SNRC.

3.2. Patient data

Ten acute ischemic stroke patient data sets were collected
on a 3-T MR scanner (Signa VH/i; General Electric
Healthcare, Waukesha, WI, USA). Informed written consent
using an institutional review board-approved procedure was

image of Fig. 2


Fig. 3. Optimal deconvolution parameters that minimize the rms error in CBF
as a function of SNR. Optimization of α and PSVD parameters for the SD,
bcSVD, TikhoSVD and Tikhonov methods for different levels of SNR. The
frequency cutoff used for the low-pass filter in SD is related to PSVD by Eq. 7.
Parameters used in the simulations are as follows: CBF=60 ml/100 g/min;
CBV=5 ml/100 g; MTT=4 s; Δt=2 s.
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obtained from all patients prior to imaging. As part of our
clinical acute stroke imaging protocol, DSC T2⁎-weighted
perfusion images were collected. Full brain coverage was
achieved with 17 contiguous gradient-recalled echo planar
image slices, each 5 mm thick. The slices were obliquely
oriented (para-axially), and data were acquired with a
repetition time (TR)/echo time (TE)/flip were 2000 ms/30
ms/45°. The acquisition matrix was 144×144 over a 24-cm
field of view, and the reconstructed images were interpolated
to 256×256with sinc interpolation.An 8-channel phased-array
head coil was used, and the images from each channel were
combined with the sum-of-squares method. Typically, an
injection of 20ml of 0.5mmolml−1 contrast agent (Magnevist,
Berlex Canada, Pointe-Claire, QC, Canada) was injected with
a power injector (Spectris;Medrad,Warrendale, PA,USA) at a
rate of 5 ml s−1 intravenously and was followed by an injection
of N20 ml of saline at the same rate. Total scan time was 100 s.

In-house software (written in Matlab, R2010a; The
Mathworks, Inc., Natick, MA, USA) was used to process
the patient data. MR signal intensity versus time functions
were used to determine peak concentration and TTP maps.
From these maps, an arterial input function, Ca(t), was
selected from the middle cerebral artery. This signal was
chosen based on the anatomical position and characteristics
of the signal (i.e., the selected signal was chosen to resemble
the approximated gamma-variate distribution). The MR
signal functions were extracted and converted to concentra-
tion time functions using Eq. (2).

To ensure that the MTTESTIMATE values were indeed
accurate in vivo, two relative MTT maps were produced
from each image data set. The first MTT map was created
using the calculated MTTESTIMATE values, and the second
map was produced via the central volume theorem (i.e.,
MTT=CBV/CBF). The SD deconvolution method was used
to generate the CBF estimate. CBF maps were then created
for each of the deconvolution methods (SD, bcSVD,
TikhoSVD and the Tikhonov ridge regularization) for all
10 patient data sets. The SNRC was determined, and the
optimal parameters (α, PSVD and χ, chosen as applicable)
from each method were used in the deconvolution process.

Regions of interest were placed in the same spatial
location across all the CBF map types in both healthy and
ischemic GM and WM to measure the contrast. The stroke-
affected regions were identified from the TTP maps
(generally regions with greater than 2-s delay in contrast
arrival), as this map showed good conspicuity of the
ischemic areas and did not require deconvolution. The
mean and standard deviations were computed for each region
of interest in each CBF map across all the patients. CBF map
image contrast was then calculated for both GM and WM by

Image contrast =
jCBFHEALTHY − CBFISCHEMIC j
CBFHEALTHY + CBFISCHEMIC

: ð10Þ

Image contrast from each of the CBF map types was
compared against the simple extrapolation method using a
two-way repeated-measures analysis of variance (ANOVA)
test with the following factors: tissue type (WM or GM) and
tissue state (normally perfused or ischemic) and interaction
between tissue type and state, with a confidence level of
Pb.05 as significant. Post hoc ANOVA tests with Bonferroni
correction were performed to find statistically significant
differences versus the simple extrapolation approach.

Data were available for one patient who was not treated
because he/she arrived past the window for thrombolytic
intervention, thus allowing assessment of the natural course
of the stroke. This patient was rescanned again after 30 days
during a clinical follow-up study. For this patient, the initial
scans (at stroke onset) showed a small abnormality on
DWI, indicating a small core infarct volume. The follow-up
fluid-attenuated inversion recovery (FLAIR) scan showed
that the infarct had grown. The untreated patient provided
an interesting opportunity to selectively test the perfusion–
diffusion mismatch theory [4] and generate an ROC curve
for distinguishing 30-day infarct from normal tissue as a
function of baseline perfusion values. The images from
the follow-up FLAIR study were spatially registered to the
initial images. The pixels of the final infract on the FLAIR
images were then identified. A changing CBF threshold
was then applied across each of the CBF maps to deter-
mine the sensitivity versus 1 − specificity of detecting the
final infarct.

4. Results

4.1. Computer simulations

The optimal filter cutoff/threshold parameter values for
the four deconvolution techniques examined were plotted
against SNR (Fig. 3). These values of PSVD and α resulted in
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Fig. 4. (A) Using a Monte-Carlo simulation, the MTTwas varied from 2 to 20 s. At eachMTT in the simulation, the MTTESTIMATE value was calculated using the
procedure described in the text. The simulation shows a very linear response with a tight variance in the estimator for an SNR of 3 at small MTT. Simulation
parameters were as follows: 1000 trials were run for each point, CBV=5.00 and 1.74 ml/100 g; ATD=0.17 s; PSVD=0.2; Δt=2 s. (B) The effect of changing the
extrapolation constant on CBF error versus MTT. A near-flat response can be achieved with an extrapolation constant of 100 at a PSVD of 0.2. This result
suggests that there is an optimal extrapolation constant (χOPT) that can be chosen to minimize the error. (C) Monte-Carlo simulations were again undertaken, this
time to find χOPT for a PSVD of 0.2 at an SNR=3. It was found that χOPT constant did not change greatly with SNR, if the appropriate PSVD was chosen. (D)
χOPT did change with the PSVD, and the Monte-Carlo simulation was varied to find the best choice of χ0, given PSVD.
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the smallest error (Δrms) and, thus, the least degree of MTT
dependence for a given SNRC.

For low SNR studies, The MTTESTIMATE simulations
(Fig. 4A) had good linearity and were monatomic. The data
obtained for lower CBV were less linear over the evaluated
range of MTT. The estimator also had a small variance for
small MTT, even given the poor SNR (SNR=3 in this
example). The observed variance changed with MTT,
suggesting that there will be an increase in the noise of the
MTTESTIMATEmaps for increasingMTT. TheseMTTESTIMATE

results are likely acceptable for our purposes, because the
extrapolation lengthwill be largest and have the greatest impact
at short MTT (Eq. 7), and this is the region where
MTTESTIMATE is most linear and has the lowest variance.
Application of simple extrapolation was able to change the
extent of the MTT-dependant response (Fig. 4B), and an
optimal extrapolation constant (where the CBF error vs.MTT
curve was fat and close to no error) could be determined.
When the extrapolation constant is plotted against the rms
error (Δrms), there is a clear minima (Fig. 4C). In the example
case of SD deconvolution at an equivalent PSVD of 0.2, the
extrapolation constant yielding the smallestΔrms was χ=100.
Additional simulations were undertaken at different SNRC,
and it was determined that if the PSVD used for SD was
chosen appropriately, then this removed the SNR dependence
on the optimal χ (i.e., changes in SNR did not change the
optimal value of χ). For example, in the case of SD (Fig. 4D),
setting PSVDN0.15 produced nearly constant results for χ,
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Fig. 5. Comparison of MTTESTIMATE map (left) and a conventional MTT
map produced with windowed SD deconvolution (right). There is a region of
reduced blood flow and increased MTT (arrows). This region is, in general
comparable between the two maps. There appears to be an increase in noise
in the normal tissue regions of the MTT estimator map; an increase in
variance is expected from the results of the simulation Fig. 4A. We would
expect to find a larger increase in variance in the longer MTT region as well
Note that CSF is given a higher MTT value in the MTT estimator map than
the conventional estimate; this will result in a lower extrapolation length
value in the extrapolated CBF maps, which is desirable.

Table 1
Normal and ischemic tissue image contrast in CBF maps averaged over 10

Method Measured image contrast

GM WM

Simple extrapolation 0.5144±0.1280 0.5057±0.17
SD 0.2505±0.1493 0.2550±0.15
bcSVD 0.1931±0.1425 0.2282±0.15
TikhoSVD 0.4104±0.1976 0.2968±0.19
Tikhonov 0.3620±0.1847 0.2436±0.20

All other methods are compared against the simple extrapolation method w
that the CBF image contrast was significantly affected (F=4.73, P=.001) by
the deconvolution method-tissue type interaction (F=0.88, P=.4792).
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suggesting that the optimal extrapolation constant was nearly
independent of PSVD value.

4.2. Patient data

A representative MTTESTIMATE map is displayed along
with a conventional MTT map (Fig. 5). The region of
increased MTT was clearly defined on both images. There
was an observed increase in the noise of the MTT estimates,
and this increase was particularly evident in healthy tissues,
as was expected from simulations (Fig. 4A). While not as
apparent, there was also an increase in the variance in tissues
with longer MTT (i.e., within the lesion region). While the
estimated MTT map was noisier, as expected, it tracked the
true MTT values and thus was suitable for our application.
The MTTESTIMATE map provided a readily calculated
approximation of the conventional MTT map.

Averaged results from each deconvolution method
(image contrast in the CBF maps) across the 10 patient
data sets are shown in Table 1. The simple extrapolation
method showed a mean increase in image contrast compared
patien

15
11
14
47
30

ith two-
deconvo
with all other methods of between 125% and 266%.
Statistical significant differences in CBF image contrast
were found when comparing simple extrapolation against all
of the methods. ANOVA testing showed that the CBF image
contrast was significantly affected (F=4.73, P=.001) by
deconvolution method (F=9.40, P=.001) but not by tissue
type (F=1.41, P=.2379) or the deconvolution method-tissue
type interaction (F=0.88, P=.4792). The post hoc compar-
isons showed that simple extrapolation was statistically
different (Pb.05) in both tissue types, except when
comparing GM with the TikhoSVD method (P=1.000) and
the Tikhonov method (P=.417) and when comparing WM
with the TikhoSVD method (P=.108).

An example series of CBF maps of an untreated patient
are shown along with initial DWI and 30-day follow-up
FLAIR images (Fig. 6). Each of the perfusion deconvolution
methods shows a lesion on the CBF map that corresponds to
follow-up imaging. However, there is a varying degree to
which these lesions are visible and match the 30-day lesion.
The bcSVD and SD deconvolution methods, for example, do
not show the same conspicuity of the ischemic lesion
compared with the other methods. The simple extrapolation
method best matched the 30-day outcome lesion. The ROC
curve (Fig. 7) derived from the data in Fig. 6 also
demonstrated that simple extrapolation performed the best.
The TikhoSVDmethod also performed well, followed by the
SD and Tikhonov methods. The bcSVD method had the
worst performance in this patient.

5. Discussion

The results show an increase in image contrast between
healthy and ischemic tissues when using the simple
extrapolation technique when compared with other deconvo-
lution methods. Regions that are likely to become core infarct
are more conspicuous on CBF maps reconstructed with the
simple extrapolation during early ischemic events. Patient
data matched simulation results; as expected there, was a
relative increase of CBF values in normally perfused tissues
using simple extrapolation, while tissues that were ischemic
and had longer MTT values were not as affected. By
estimating MTT prior to deconvolution, the error in CBF for
ts

Comparison vs. simple
extrapolation

% Increase in CBF
image contrast

GM WM GM WM

NA NA NA NA
P=.001 P=.026 205% 198%
P=.001 P=.010 266% 222%
P=1.000 P=.108 125% 170%
P=.417 P=.017 142% 208%

way repeated-measures ANOVA comparison tests. ANOVA testing showed
lution method (F=9.40, P=.001) but not by tissue type (F=1.41, P=.2379) or

image of Fig. 5


Fig. 6. Initial and follow-up imaging for untreated acute ischemic stroke patient (top left) shows initial DWI image with a small infarct in the ischemic region
(bottom left). FLAIR imaging that took place 30 days after the stroke. Follow-up image was registered to perfusion images at onset. The core infarct has grown
significantly. According to the diffusion–perfusion mismatch theory, we would anticipate that the CBF map would show us this final infarct region during the
initial imaging procedure. All five methods for generating CBF maps are shown here. These methods have varying degrees of lesion definition and
correspondence to outcome by 30-day FLAIR imaging.
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normal (short MTT) signals was minimized. The resulting
increase in CBF values for healthy tissue increased the image
contrast observed between normal and ischemic regions.

The computational requirements of each method should
be considered when implementing deconvolution tech-
niques. Data were processed using commercial numerical
simulation software (R2010a; The Mathworks, Inc.), and
Fig. 7. ROC curve for detection of final infarct using the five CBF maps is
shown. The final infarct was determined from the infarct on the 30-day
follow-up FLAIR image. Only pixels containing GM and/or WM were used
in this analysis. The extrapolated CBF map was the best technique for
detection of the penumbral region in this patient example.
total processing time was not directly addressed in the results
presented; however, the time required for each of the
methods is relevant in acute ischemic stroke when imple-
menting and clinically using any of these techniques. All
processing was performed in a multithreading environment;
all of the algorithms could be accelerated with increased data
pipelines. All of the SVD-based and the Tikhonov ridge
techniques were processed in approximately the same period
of time on the order of 20 s per PWI data set. They all ran in
approximately the same period of time because most of the
computational time was required for matrix multiplications,
and the time required to invert the Ca matrix was relatively
short. The SD method required approximately twice the time
of the SVD methods. The simple extrapolation method was
the most computationally intensive and took almost three
times longer than the SD method, requiring almost 2 minutes
per data set. Implementation of the methods in C/C++ would
likely reduce these computation periods drastically.

The extrapolation process was very quick, but this
implementation required Fourier interpolation, which in-
creased the total processing duration. Selection of a shorter
interpolation length would be recommended. Our experience
suggests that DFT transformations on the order of 256 points
would be as effective as the method used in this study
(interpolation to 4096 points). Interpolating to this shorter
length would result in a shorter processing time while still
allowing for sufficient extrapolation lengths. In our patient
studies, the maximum extrapolation length for normal tissues
was ≤140 points.

image of Fig. 6
image of Fig. 7
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This work showed improved accuracy in CBF perfusion
images when simple extrapolation was used. Simple extrap-
olation is a linear approach andmaintains first-order continuity
in the frequency domain (i.e., there are no discontinuities in the
frequency-domain signal). Simple extrapolation can be used
with other deconvolution approaches. In principle, more
sophisticated extrapolation techniques such as higher order
extrapolation and auto regressive moving average techniques
[21–23], which maintain higher orders of signal continuity,
would be preferred [24]. However, due to MR perfusion
acquisition limitations, few nonzeroed data points are
generally available; these more sophisticated techniques tend
to be, in practice, less effective.Model-based filteringmay also
be beneficial when dealing with multiple residue function
types (i.e., biexponential model types used for permeability
measurements). However, for this study, we used the simplest
and most widely accepted technique, an exponential decay
function. The performance of the simple extrapolation method
on patient data confirms a degree of independence of the
method on the chosen residue function model. More adaptive
filtering-based techniques could also be effective in improving
image contrast, although we would hypothesis that such tech-
niques would still benefit from frequency-domain extrapola-
tion, such as the simple extrapolation approach presented here.
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